Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(20): 204804, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172777

RESUMO

Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at the ∼1% level, nearly one order of magnitude larger than what is needed for challenging applications like coherent light sources or colliders. In plasma accelerators, the beam energy spread is mainly dominated by its energy chirp (longitudinally correlated energy spread). Here we demonstrate that when an initially chirped electron beam from a linac with a proper current profile is sent through a low-density plasma structure, the self-wake of the beam can significantly reduce its energy chirp and the overall energy spread. The resolution-limited energy spectrum measurements show at least a threefold reduction of the beam energy spread from 1.28% to 0.41% FWHM with a dechirping strength of ∼1 (MV/m)/(mm pC). Refined time-resolved phase space measurements, combined with high-fidelity three-dimensional particle-in-cell simulations, further indicate the real energy spread after the dechirper is only about 0.13% (FWHM), a factor of 10 reduction of the initial energy spread.

2.
Phys Rev E ; 98(1-1): 013202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110864

RESUMO

In radiation pressure ion acceleration (RPA) research, the transverse stability within laser plasma interaction has been a long-standing, crucial problem over the past decades. In this paper, we present a one-dimensional two-fluid theory extended from a recent work Wan et al. Phys. Rev. Lett. 117, 234801 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.234801 to clearly clarify the origin of the intrinsic transverse instability in the RPA process. It is demonstrated that the purely growing density fluctuations are more likely induced due to the strong coupling between the fast oscillating electrons and quasistatic ions via the ponderomotive force with spatial variations. The theory contains a full analysis of both electrostatic (ES) and electromagnetic modes and confirms that the ES mode actually dominates the whole RPA process at the early linear stage. By using this theory one can predict the mode structure and growth rate of the transverse instability in terms of a wide range of laser plasma parameters. Two-dimensional particle-in-cell simulations are systematically carried out to verify the theory and formulas in different regimes, and good agreements have been obtained, indicating that the electron-ion coupled instability is the major factor that contributes the transverse breakup of the target in RPA process.

3.
Phys Rev Lett ; 119(6): 064801, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949606

RESUMO

We show that a high-energy electron bunch can be used to capture the instantaneous longitudinal and transverse field structures of the highly transient, microscopic, laser-excited relativistic wake with femtosecond resolution. The spatiotemporal evolution of wakefields in a plasma density up ramp is measured and the reversal of the plasma wake, where the wake wavelength at a particular point in space increases until the wake disappears completely only to reappear at a later time but propagating in the opposite direction, is observed for the first time by using this new technique.

4.
Phys Rev Lett ; 117(23): 234801, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982647

RESUMO

The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

5.
Sci Rep ; 6: 29485, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27403561

RESUMO

A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

6.
Phys Rev Lett ; 117(3): 034801, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472116

RESUMO

Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2k_{0} and about 5k_{0}, where k_{0} is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

7.
Phys Rev Lett ; 116(12): 124801, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058082

RESUMO

Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

8.
Phys Rev Lett ; 112(3): 035003, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24484147

RESUMO

The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods.

9.
Phys Rev Lett ; 111(1): 015003, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863007

RESUMO

The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

10.
Rev Sci Instrum ; 84(2): 022704, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464186

RESUMO

We propose and analyze a scheme to generate enhanced ultrabroadband terahertz (THz) radiation through coherent transition radiation emitted by ultrashort electron beams based on a 10.5 m beamline at Tsinghua University. The proposed scheme involves the initial compression of the electron beam with a few hundred pC charges using a velocity bunching scheme (i.e., RF compression) in an under-compression mode instead of the usual critical-compression mode in order to maintain a positive energy chirp at the exit of the traveling wave accelerator. After a long drift segment, the particles in the tail catch up with the bunch head. More than 80% of the particles are distributed in a spike with an rms length less than 20 fs. Such beams correspond to an ultrabroadband coherent transition radiation (CTR) spectrum of 0.1 THz to 25 THz, with the single-pulse THz radiation energy of up to 50 µJ. The principle of CTR and under-compression mode of velocity bunching are introduced in this paper. And the ASTRA simulation parameters and the stability of the system are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA