Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 98: 103785, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875213

RESUMO

Cronobacter sakazakii is an emerging opportunistic foodborne pathogen causing rare but severe infections in neonates. Furthermore, the formation of biofilm allows C. sakazakii to persist in different environments. We have demonstrated that the mutator phenotype ascribed to deficiency of the pmrA gene results in more biomass in the first 24 h but less during the post maturation stage (7-14 d) compared with BAA 894. The present study aimed to investigate the regulatory mechanism modulating biofilm formation due to pmrA mutation. The transcriptomic analyses of BAA 894 and s-3 were performed by RNA-sequencing on planktonic and biofilm cells collected at different time points. According to the results, when comparing biofilm to planktonic cells, expression of genes encoding outer membrane proteins, lysozyme, etc. were up-regulated, with LysR family transcriptional regulators, periplasmic proteins, etc. down-regulated. During biofilm formation, cellulose synthase operon genes, flagella-related genes, etc. played essential roles in different stages. Remarkably, pmrA varies the expression of a number of genes related to motility, biofilm formation, and antimicrobial resistance, including srfB, virK, mviM encoding virulence factor, flgF, fliN, etc. encoding flagellar assembly, and marA, ramA, etc. encoding AraC family transcriptional regulators in C. sakazakii. This study provides valuable insights into transcriptional regulation of C. sakazakii pmrA mutant during biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Cronobacter sakazakii/genética , Plâncton/genética , Transcriptoma , Proteínas de Bactérias/genética , Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/fisiologia , Regulação Bacteriana da Expressão Gênica , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Transcrição Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Front Microbiol ; 11: 903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655500

RESUMO

Cronobacter sakazakii is an opportunistic Gram-negative pathogen that could cause meningitis and necrotizing enterocolitis. Several Gram-negative bacteria use the PmrA/PmrB system to sense and adapt to environmental change by resistance to cationic antimicrobial peptides of host immune systems. The PmrA/PmrB two-component system regulates several genes to modify LPS structure in the bacterial outer membrane. The role of PmrA/PmrB of C. sakazakii has been studied within the current study. The results suggest that PmrA/PmrB plays a crucial role in modifying LPS structure, cationic antimicrobial peptide susceptibility, cell membrane permeability and hydrophobicity, and invading macrophage.

3.
Microb Pathog ; 121: 232-237, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29800699

RESUMO

BACKGROUND: Cronobacter species are Gram-negative opportunistic foodborne pathogens that may cause enterocolitis, bacteremia and meningitis in neonates and premature neonates. Lipopolysaccharide (LPS) serves as the major component of the outer membrane of cell, is a potential virulence factor for Cronobacter. METHODS: Given the potential importance of this molecule in infection and virulence, SDS-PAGE of LPS, MS and TLC characterization of phospholipids and phenotypic characterization of Cronobacter spp. strains were carried out. RESULT: The phospholipids from Cronobacter yielded four major peaks at m/z 719.9, 733.9, 747.9 and 773.9 in the spectrum. All Cronobacter showed O-antigen bands except C. muytjensii ATCC 51329. When Cronobacter defect O-antigen, the outer membrane permeability and cell surface hydrophobicities are increased. All Cronobacter are able to grow under pH 5.0 condition and able to grow under 6% NaCl concentration. C. dublinensis DSM 18705 has a higher infection rate to Caco-2 cells than other Cronobacter. CONCLUSION: Invasion of pathogens into a host cell is critical component to an infectious case. And C. dublinensis DSM 18705 has a higher infection rate to Caco-2 cells than other Cronobacter.


Assuntos
Cronobacter/classificação , Fosfolipídeos/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Técnicas de Tipagem Bacteriana , Células CACO-2 , Cronobacter/patogenicidade , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Permeabilidade , Fenótipo , Virulência
4.
Nat Commun ; 7: 12042, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345928

RESUMO

The locations and arrangements of carotenoids at the subcellular level are responsible for their designated functions, which reinforces the necessity of developing methods for constructing carotenoid-based suprastructures beyond the molecular level. Because carotenoids lack the binding sites necessary for controlled interactions, functional structures based on carotenoids are not easily obtained. Here, we show that carotene-based suprastructures were formed via the induction of pillararene through a phase-transfer-mediated host-guest interaction. More importantly, similar to the main component in natural photosynthesis, complexes could be synthesized after chlorophyll was introduced into the carotene-based suprastructure assembly process. Remarkably, compared with molecular carotene or chlorophyll, this synthesized suprastructure exhibits some photocatalytic activity when exposed to light, which can be exploited for photocatalytic reaction studies of energy capture and solar conversion in living organisms.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/síntese química , Compostos de Amônio Quaternário/metabolismo , beta Caroteno/química , Calixarenos , Catálise , Transferência de Energia , Luz , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA