Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17568-17576, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39121343

RESUMO

CO2 injection into shale reservoirs has been recognized as one of the most promising techniques for enhanced oil recovery and carbon capture, utilization, and storage. However, the omnipresent nanopores and the water films formed near the pore walls affect the understanding of mechanisms of CO2 regulating crude oil mobility in shale nanopores. In this work, we employ molecular dynamics simulations to study the occurrence and flow of CO2 and octane (nC8) mixtures in quartz nanopores containing water films, to illustrate the impact mechanisms of CO2 on nC8 mobility. The results indicate that nC8 exists between water films, and CO2 is mainly miscible with nC8 in the pore center, and a small portion of it accumulates at the interface between nC8 and the water film. CO2 significantly decreases the apparent viscosity of nC8 in both the bulk nC8 region and the nC8-water interface region, improving nC8 fluidity. As the percentage of CO2 in the CO2 and nC8 mixtures increases from 0 to 50%, the mean flow velocities of nC8 in the bulk phase region and the nC8-water interface region increase by 92.85 and 60.64%, respectively. Three major microscopic mechanisms of CO2 improving nC8 fluidity in quartz nanopores with water films are summarized: (i) CO2 reduces friction between nC8 and the water film by increasing the angle between nC8 molecules and the plane of the water film; (ii) CO2 widens the distance between nC8 molecules, causing the volume expansion of nC8 and its viscosity reduction; (iii) CO2 significantly increases the most probable and average velocities of nC8 molecules, thus improving their mobility. Our results enhance the comprehension of how CO2 facilitates oil flow in water-bearing shale reservoirs and the exploitation of unconventional oil resources.

2.
J Hazard Mater ; 468: 133730, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368681

RESUMO

The ecological restoration of rare earth mines and the management of rare earth tailings have consistently posed global challenges, constraining the development of the rare earth industry. In this study, Zeolite A is efficiently prepared from the tailings of an ion-type rare earth mine in the southern Jiangxi Province of China. The resulting Zeolite A boasts exceptional qualities, including high crystallinity, a substantial specific surface area, and robust thermal stability. The optimum conditions for Zeolite synthesis are experimental determination and the adsorption properties of Zeolite A for typical pollutants (Cd2+, Cu2+, NH4+, PO43- and F-) in rare earth mines. The synthesised Zeolite A material is found to have strong adsorption properties. The adsorption mechanism is mainly cation exchange, and the priority of adsorption of pollutants is Cu2+> Cd2+ > NH4+ > PO43- > F-. Notably, the sodium Zeolite A material synthesized at room temperature can be effectively recycled multiple times. In summary, we propose a method to synthesise low cost and high adsorption zeolites using rare earth tailings. This will facilitate the reduction of rare earth tailings and the rehabilitation of rare earth mines. Our method has great potential as a rehabilitation technology for rare earth mines.

3.
Water Res ; 245: 120546, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688855

RESUMO

Understanding the historical patterns of phosphorus (P) cycling is essential for sustainable P management and eutrophication mitigation in watersheds. Currently, there is a lack of long-term watershed-scale models that analyze the flow of P substances and quantify the socioeconomic patterns of P flow. This study adopted a watershed perspective and incorporated crucial economic and social subsystems related to P production, consumption, and emissions throughout the entire life cycle. Based on this approach, a bottom-up watershed P flow analysis model was developed to quantify the P cycle for the first time in the Poyang Lake watershed from 1950 to 2020 and to explore the driving factors that influence its strength by analyzing multi-year P flow results. In general, the P cycle in the Poyang Lake watershed was no longer a naturally dominated cycle but significantly influenced by human activities during the flow dynamics between 1950 and 2015. Agricultural intensification and expansion of large-scale livestock farming continue to enhance the P flow in the study area. Fertilizer P inputs from cultivation account for approximately 60% of the total inputs to farming systems, but phosphate fertilizer utilization continues to decline. Feed P inputs have continued to increase since 2007. The expansion of large-scale farming and the demand for urbanization are the main factors leading to changes in feed P input patterns. The P utilization rate for livestock farming (PUEa) is progressively higher than international levels, with PUEa increasing from 0.64% (1950) to 9.7% (2020). Additionally, per capita food P consumption in the watershed increased from 0.67 kg to 0.80 kg between 1950 and 2020. The anthropogenic P emissions have increased from 1.67 × 104 t (1950) to 8.73 × 104 t (2020), with an average annual growth rate of 2.41%. Watershed-wide P pollution emissions have increased by more than five-fold. Population growth and agricultural development are important drivers of structural changes in P flows in the study area, and they induce changes in social conditions, including agricultural production, dietary structure, and consumption levels, further dominating the cyclic patterns of P use, discharge, and recycling. This study provides a broader and applicable P flow model to measure the characteristics of the P cycle throughout the watershed social system as well as provides methodological support and policy insights for large lakes in rapidly developing areas or countries to easily present P flow structures and sustainably manage P resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA