Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411721, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136169

RESUMO

Photocatalytic hydrogen production is one of the most valuable technologies in the future energy system. Here, we designed a metal-covalent organic frameworks (MCOFs) with both small-sized metal clusters and nitrogen-rich ligands, named COF-Cu3TG. Based on our design, small-sized metal clusters were selected to increase the density of active sites and shorten the distance of electron transport to active sites. While another building block containing nitrogen-rich organic ligands acted as a node that could in situ anchor metal atoms during photocatalysis and form interlayer single-atom electron bridges (SAEB) to accelerate electron transport. Together, they promoted photocatalytic performance. This represented the further utilization of Ru atoms and was an additional application of the photosensitizer. N2-Ru-N2 electron bridge (Ru-SAEB) was created in situ between the layers, resulting in a considerable enhancement in the hydrogen production rate of the photocatalyst to 10.47 mmol g-1 h-1. Through theoretical calculation and EXAFS, the existence position and action mechanism of Ru-SAEB were reasonably inferred, further confirming the rationality of the Ru-SAEB configuration. A sufficiently proximity between the small-sized Cu3 cluster and the Ru-SAEB was found to expedite electron transfer. This work demonstrated the synergistic impact of small molecular clusters with Ru-SAEB for efficient photocatalytic hydrogen production.

2.
J Colloid Interface Sci ; 676: 859-870, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39067221

RESUMO

The catalytic oxidation of formaldehyde (HCHO) at ambient temperature is a highly efficient, cost-effective and environmentally friendly approach for formaldehyde removal. Reactive oxygen (O*) and reactive hydroxyl groups (OH*) are the main active species in the catalytic oxidation reaction of HCHO. Therefore, it is crucial to design catalysts that can simultaneously enhance the surface concentrations of O* and OH*, thereby improving their overall catalytic performance. The present study aimed to design an Al2O3/CoNC catalyst featuring layered carbon nitride coupled with metal oxides possessing domain-limited cobalt (Co) metal active sites, to efficiently remove HCHO (≈100 %, 100 ppm, RH=50 %, GSHV=20,000 mL/(g h)) and ensure stability (more than 90 % formaldehyde removal within 450 h) at ambient temperature. The characterization revealed that the interaction between Al2O3-supported metal and CoNC resulted in enhanced confinement of Co, leading to a higher abundance of edge structures exposing more active sites. Additionally, the presence of highly dispersed Co-NX active sites and increased oxygen vacancies effectively facilitated the adsorption and activation processes of HCHO and O2, as well as the adsorption and desorption dynamics of intermediates during the reaction. These factors collectively contributed to an improved catalytic activity. The results of in situ infrared spectroscopy revealed that the catalyst improved the adsorption and activation of O2 and H2O, leading to the rapid generation of substantial amounts of O* and OH*. This synergistic interaction between Al2O3 and CoNC plays a crucial role in the sustained production of O* and OH*, promoting efficient of intermediate decomposition, and ensuring excellent catalytic activity and stability for HCHO.

3.
Small ; : e2405784, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072920

RESUMO

The development of efficient, high-performance catalysts for hydrogen evolution reaction (HER) remains a significant challenge, especially in seawater media. Here, RuIr alloy catalysts are prepared by the polyol reduction method. Compared with single-metal catalysts, the RuIr alloy catalysts exhibited higher activity and stability in seawater electrolysis due to their greater number of reactive sites and solubility resistance. The RuIr alloy has an overpotential of 75 mV@10 mA cm-2, which is similar to that of Pt/C (73 mV), and can operate stably for 100 hours in alkaline seawater. Density functional theory (DFT) calculations indicate that hydrogen atoms adsorbed at the top sites of Ru and Ir atoms are more favorable for HER and are most likely to be the reactive sites. This work provides a reference for developing highly efficient and stable catalysts for seawater electrolysis.

4.
Bioresour Technol ; 395: 130388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286167

RESUMO

To improve the electrochemical performance of Li-S batteries, a cathodic material (rGO150/S/CF-75) was fabricated for Li-S batteries by adopting a melt-flow method to load sulfur on biomass-derived carbon fibers, then the reduced graphene oxide was electrochemically covered on the outside surface of the sulfur. The coverage of reduced graphite oxide layers endows the performance of S/CF-75 multiple improvements. The specific capacity of rGO150/S/CF-75 cathode delivers a specific capacity of 1451.4 mAh g-1 at 0.1 A g-1. The specific capacity of rGO150/S/CF-75 cathode can still maintain 537.3 mAh g-1 after 1000 cycles at 5 A g-1 (109 % capacity retention). The excellent performance of rGO150/S/CF-75 cathode is benefit from not only the conductive paths of reduced graphene oxide layers and protective function of reduced graphene oxide layers inhibiting that the soluble sulfur diffuse into bulk electrolyte, but also the redistribution of sulfur on conductive carbon components during the cycling process.


Assuntos
Carvão Vegetal , Grafite , Íons , Enxofre
5.
Nat Commun ; 15(1): 564, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233390

RESUMO

The direct oxidation of methane to methanol under mild conditions is challenging owing to its inadequate activity and low selectivity. A key objective is improving the selective oxidation of the first carbon-hydrogen bond of methane, while inhibiting the oxidation of the remaining carbon-hydrogen bonds to ensure high yield and selectivity of methanol. Here we design ultrathin PdxAuy nanosheets and revealed a volcano-type relationship between the binding strength of hydroxyl radical on the catalyst surface and catalytic performance using experimental and density functional theory results. Our investigations indicate a trade-off relationship between the reaction-triggering and reaction-conversion steps in the reaction process. The optimized Pd3Au1 nanosheets exhibits a methanol production rate of 147.8 millimoles per gram of Pd per hour, with a selectivity of 98% at 70 °C, representing one of the most efficient catalysts for the direct oxidation of methane to methanol.

6.
Small ; 20(8): e2307547, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814367

RESUMO

The sluggish four-electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W-doped Cu2 V2 O7 (CVO) constructs corner-sharing tetrahedrally coordinated W-V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W-modified CVO photoanode is 0.97 mA cm-2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d-band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate-limiting step *O to *OOH.

7.
J Colloid Interface Sci ; 656: 104-115, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984166

RESUMO

The elimination of formaldehyde at room temperature holds immense potential for various applications, and the incorporation of a catalyst rich in surface hydroxyl groups and oxygen significantly enhances its catalytic activity towards formaldehyde oxidation. By employing a coprecipitation method, we successfully achieved a palladium domain confined within the manganese carbonate lattice and doped with iron. This synergistic effect between highly dispersed palladium and iron greatly amplifies the concentration of surface hydroxyl groups and oxygen on the catalyst, thereby enabling complete oxidation of formaldehyde at ambient conditions. The proposed method facilitates the formation of domain-limited palladium within the MnCO3 lattice, thereby enhancing the dispersion of palladium and facilitating its partial incorporation into the MnCO3 lattice. Consequently, this approach promotes increased exposure of active sites and enhances the catalyst's capacity for oxygen activation. The co-doping of iron effectively splits the doping sites of palladium to further enhance its dispersion, while simultaneously modifying the electronic modification of the catalyst to alter formaldehyde's adsorption strength on it. Manganese carbonate exhibits superior adsorption capability for activated surface hydroxyl groups due to the presence of carbonate. In situ infrared testing revealed that dioxymethylene and formate are primary products resulting from catalytic oxidation of formaldehyde, with catalyst surface oxygen and hydroxyl groups playing a crucial role in intermediate product decomposition and oxidation. This study provides novel insights for designing palladium-based catalysts.

8.
J Interv Med ; 6(2): 64-68, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37409059

RESUMO

Pain interventional therapy, known as the most promising medical technology in the 21st century, refers to clinical treatment technology based on neuroanatomy, neuroimaging, and nerve block technology to treat pain diseases. Compared with traditional destructive surgery, interventional pain therapy is considered a better and more economical choice of treatment. In recent years, a variety of minimally invasive pain interventional therapy techniques, such as neuroregulation, spinal cord electrical stimulation, intervertebral disc ablation, and intrasheath drug infusion systems, have provided effective solutions for the treatment of patients with post-herpetic neuralgia, complex regional pain syndrome, cervical/lumbar disc herniation, and refractory cancer pain.

9.
Materials (Basel) ; 16(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241505

RESUMO

Water pollution is a significant social issue that endangers human health. The technology for the photocatalytic degradation of organic pollutants in water can directly utilize solar energy and has a promising future. A novel Co3O4/g-C3N4 type-II heterojunction material was prepared by hydrothermal and calcination strategies and used for the economical photocatalytic degradation of rhodamine B (RhB) in water. Benefitting the development of type-II heterojunction structure, the separation and transfer of photogenerated electrons and holes in 5% Co3O4/g-C3N4 photocatalyst was accelerated, leading to a degradation rate 5.8 times higher than that of pure g-C3N4. The radical capturing experiments and ESR spectra indicated that the main active species are •O2- and h+. This work will provide possible routes for exploring catalysts with potential for photocatalytic applications.

10.
Nat Commun ; 14(1): 2883, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208342

RESUMO

The Li metal is an ideal anode material owing to its high theoretical specific capacity and low electrode potential. However, its high reactivity and dendritic growth in carbonate-based electrolytes limit its application. To address these issues, we propose a novel surface modification technique using heptafluorobutyric acid. In-situ spontaneous reaction between Li and the organic acid generates a lithiophilic interface of lithium heptafluorobutyrate for dendrite-free uniform Li deposition, which significantly improves the cycle stability (Li/Li symmetric cells >1200 h at 1.0 mA cm-2) and Coulombic efficiency (>99.3%) in conventional carbonate-based electrolytes. This lithiophilic interface also enables full batteries to achieve 83.2% capacity retention over 300 cycles under realistic testing condition. Lithium heptafluorobutyrate interface acts as an electrical bridge for uniform lithium-ion flux between Li anode and plating Li, which minimizes the occurrence of tortuous lithium dendrites and lowers interface impedance.

11.
Small ; 19(25): e2301128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919799

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.

12.
Environ Technol ; 44(28): 4394-4408, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35762246

RESUMO

According to the typical Sillén-structured BiOBr, a simple solvothermal method was used to successfully synthesise Sillén-structured bimetallic oxyhalide CdBiO2Br with the existence of 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br), a kind of reactive ionic liquid. The introduction of the metal cadmium, which can form Sillén-structured bimetallic oxyhalide, made the alternating structure of BiOBr originally [Bi2O2]2+ and bilayer Br- modified to that of [CdBiO2]+ and monolayer Br-. So that the distance between layer and layer is greatly shortened, which facilitates the migration and separation of photogenerated carriers and promotes the generation of more reactive oxygen species. After modification, the band positions of CdBiO2Br materials can make more full use of visible light and more favourable utilisation of solar resources. As confirmed by radical trapping analysis and ESR analysis, superoxide radical (·O2-) and hole (h+) acted the major part during photocatalysis. The possible intermediate products that appeared during the degradation progress were analyzed by LC-MS. Moreover, the generation of superoxide ions was quantitatively analyzed by nitroblue tetrazolium chloride (NBT). In this paper, we present an ultra-thin layered material for visible light catalysis, which enlightens a feasible scheme for the research and development of new layered photocatalytic materials.


Assuntos
Bismuto , Processos Fotoquímicos , Bismuto/química , Luz , Catálise
13.
Nanotechnology ; 34(6)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36252529

RESUMO

To carry out effective resource reforming of sustainable electricity, hydrogen production by electrochemical water splitting provides an eco-friendly and economical way. Nevertheless, the oxygen evolution reaction (OER) at the anode is limited by the slow reaction process, which hinders the large-scale development and application of electrolysis technology. In this work, we present an electrocatalyst with superior OER performance, which attributed to the abundant active sites and good electronic conductivity. The two-dimensional CoMo Layered Double Hydroxide nanosheets are synthesized and deposited on conductive carbon nanotubes (CoMo LDH/CNTs), and then hybrid composites show better catalytic performance than their undecorated counterpart under identical conditions. Specifically, CoMo LDH/CNTs exhibit the low overpotential of 268 mV to obtain 10 mA cm-2and satisfactory stability (more than 40 h). We emphasize that this hybridization strategy with a conductive supporting framework could design more abundant and low-cost OER electrocatalysts to minimize electrical energy consumption, thereby achieving efficient conversion between energy sources.

14.
Open Life Sci ; 17(1): 1135-1147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185403

RESUMO

Oral squamous cell carcinoma (OSCC) prognosis remains poor. Here we aimed to identify an effective prognostic signature for predicting the survival of patients with OSCC. Gene-expression and clinical data were obtained from the Cancer Genome Atlas database. Immune microenvironment-associated genes were identified using bioinformatics. Subtype and risk-score analyses were performed for these genes. Kaplan-Meier analysis and immune cell infiltration level were explored in different subtypes and risk-score groups. The prognostic ability, independent prognosis, and clinical features of the risk score were assessed. Furthermore, immunotherapy response based on the risk score was explored. Finally, a conjoint analysis of the subtype and risk-score groups was performed to determine the best prognostic combination. We found 11 potential prognostic genes and constructed a risk-score model. The subtype cluster 2 and a high-risk group showed the worst overall survival; differences in survival status might be due to the different immune cell infiltration levels. The risk score showed good performance, independent prognostic value, and valuable clinical application. Higher risk scores showed higher Tumor Immune Dysfunction and Exclusion scores, indicating that patients with a high-risk score were less likely to benefit from immunotherapy. Finally, conjoint analysis for the subgroups and risk groups showed the best predictive ability.

15.
J Pain Symptom Manage ; 64(6): 521-531, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36002122

RESUMO

OBJECTIVE: The discrete choice experiment (DCE) is conducted in this study to discuss Chinese cancer patients' risk-benefit preferences for rescue medications (RD) and their willingness to pay (WTP) in the treatment of breakthrough cancer pain (BTcP). METHOD: Through literature reviews, specialist consultation, and patient surveys, this work finally included five attributes in the DCE questionnaire, i.e., the remission time of breakthrough pain, adverse reactions of the digestive system, adverse reactions of the neuropsychiatric system, administration routes, and drug costs (estimating patients' WTP). The alternative-specific conditional logit model is used to analyze patients' preferences and WTP for each attribute and its level and to assess the sociodemographic impact and clinical characteristics. RESULTS: A total of 134 effective questionnaires were collected from January, 1 to April, 5 in 2022. Results show that the five attributes all have a significant impact on cancer patients' choice of "rescue medications" (P<0.05). Among these attributes, the remission time after drug administration (10.0; 95%CI 8.5-11.5) is the most important concern for patients, followed by adverse reactions of the digestive system (8.5; 95%CI 7.0-10.0), adverse reactions of the neuropsychiatric system (2.9; 95%CI 1.4-4.3), and administration routes (0.9; 95%CI 0-1.8). The respondents are willing to spend 1182 yuan (95%CI 605-1720 yuan) per month for "rescue medications" to take effect within 15 minutes and spend 1002 yuan (95%CI 605-1760 yuan) per month on reducing the incidence of drug-induced adverse reactions in the digestive system to 5%. CONCLUSION: For Chinese cancer patients, especially those with moderate/severe cancer pain, the priority is to relieve the BTcP more rapidly and reduce adverse drug reactions more effectively. This study indicates these patients' expectations for the quick control of breakthrough pain and their emphasis on the reduction of adverse reactions. These findings are useful for doctors, who are encouraged to communicate with cancer patients about how to better alleviate the BTcP.


Assuntos
Dor Irruptiva , Dor do Câncer , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Preferência do Paciente/psicologia , Comportamento de Escolha , Dor do Câncer/tratamento farmacológico , Inquéritos e Questionários , Neoplasias/complicações , Neoplasias/tratamento farmacológico
16.
Chemosphere ; 304: 135320, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35697103

RESUMO

Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L-1 RhB only requires 37 min.


Assuntos
Bismuto , Microesferas , Rodaminas , Adsorção , Catálise
17.
Artigo em Inglês | MEDLINE | ID: mdl-34511356

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is a malignant tumor. This study aimed to investigate the role of a long noncoding RNA (lncRNA), LINC01123, in OSCC prognosis and progression and to explore the underlying mechanisms. STUDY DESIGN: OSCC tissues were collected from 102 patients, and 4 OSCC cell lines were analyzed. The expression levels of LINC01123 and miR-34a-5p were estimated using quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) and Transwell assays were used to assess the proliferation, migration, and invasion of OSCC cells. Kaplan-Meier survival analysis was used to analyze the prognostic value of LINC01123 in OSCC. RESULTS: The analysis results showed that LINC01123 was overexpressed in OSCC tumor tissues; also, the prognosis of patients with OSCC with high LINC01123 expression levels was poor. The knockdown of LINC01123 inhibited the proliferation, migration, and invasion of OCSS cells. MiR-34a-5p was a target of LINC01123, and its inhibitor could reverse the effect of silenced LINC01123 on the progression of OSCC. CONCLUSIONS: Highly expressed LINC01123 was associated with poor prognosis of OSCC and regulated OSCC cell proliferation, invasion, and migration by sponging miR-34a-5p. Therefore, the LINC01123/miR-34a-5p axis may provide new ideas for the prognosis and treatment of OSCC.


Assuntos
MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
18.
Chem Commun (Camb) ; 57(78): 10055-10058, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505847

RESUMO

Lithium (Li) dendrite growth seriously hinders the practical application of Li metal batteries. Here, we report molecular amidinothiourea (ATU) as a new electrolyte additive to regulate Li stripping/plating behaviors of Li metal anodes. The molecular ATU in the electrolyte can act as a shielding layer on the Li metal surface to suppress the decomposition of electrolytes as verified by XPS and adsorption energy calculation, which improves the electrochemical reversibility of the Li plating/stripping behaviors and inhibits lithium dendrite growth.

19.
ACS Appl Mater Interfaces ; 13(33): 39523-39532, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34384215

RESUMO

Photocatalytic CO2 reduction is a means of alleviating energy crisis and environmental deterioration. In this work, a rising two-dimensional (2D) material rarely reported in the field of photocatalytic CO2 reduction, black phosphorus (BP) nanosheets, is synthesized, on which Co2P is in situ grown by solvothermal treatment using BP itself as a P source. Co2P on the BP nanosheets (BPs) surface can prevent the destruction of BPs in ambient air and, in the meantime, favor charge separation and CO2 adsorption and activation during the catalytic process. Upon light irradiation, Co2P can extract the photogenerated electrons effectively across the intimate interface and lower the CO2 activation energy barrier, supported by both experimental characterizations and theoretical calculations. Benefitting from integrated advantages of BPs and Co2P, the optimal Co2P/BPs exhibit photocatalytic reduction of CO2 to CO at a rate of 25.5 µmol g-1 h-1 with a selectivity of 91.4%, both of which are higher than those of pristine BPs. This work presents ideas for stabilizing BPs and improving their CO2 reduction performance simultaneously.

20.
Front Pharmacol ; 12: 627557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421582

RESUMO

Background: Epilepsy is a common neurological disease, and neuroinflammation is one of the main contributors to epileptogenesis. Pyroptosis is a type of pro-inflammatory cell death that is related to epilepsy. Agmatine, has anti-inflammatory properties and exerts neuroprotective effects against seizures. Our study investigated the effect of agmatine on the core pyroptosis protein GSDMD in the context of epilepsy. Methods: A chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ)-induced kindling or lipopolysaccharide (LPS) stimulation. H&E and Nissl staining were used to evaluate hippocampal neuronal damage. The expression of pyroptosis and inflammasome factors was examined by western blotting, quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Results: Agmatine disrupted the kindling acquisition process, which decreased seizure scores and the incidence of full kindling and blocked hippocampal neuronal damage. In addition, agmatine increased BV2 microglial cell survival in vitro and alleviated seizures in vivo by suppressing the levels of PTZ-induced pyroptosis. Finally, the expression of TLR4, MYD88, phospho-IκBα, phospho-NF-κB and the NLRP3 inflammasome was significantly upregulated in LPS-induced BV2 microglial cells, while agmatine suppressed the expression of these proteins. Conclusions: Our results indicate that agmatine affects epileptogenesis and exerts neuroprotective effects by inhibiting neuroinflammation, GSDMD activation, and pyroptosis. The inhibitory effect of agmatine on pyroptosis was mediated by the suppression of the TLR4/MYD88/NF-κB/NLRP3 inflammasome pathway. Therefore, agmatine may be a potential treatment option for epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA