Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Adv Sci (Weinh) ; : e2309602, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682481

RESUMO

Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ-helical interdomain linker (ɑ-linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability - those with shorter ɑ-linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ-linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus-Thermus, the PPXs from thermophilic species possess a shorter ɑ-linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high-temperature environments. These findings provide insights into the interdomain linker length-dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.

2.
Microbiol Res ; 284: 127713, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608339

RESUMO

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Deinococcus , Edição de Genes , Deinococcus/genética , Edição de Genes/métodos , Reparo do DNA/genética , Genoma Bacteriano , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Mutagênese , Instabilidade Genômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Dano ao DNA
3.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436697

RESUMO

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias Ovarianas , Grânulos de Estresse , Proteína 1 de Ligação a Y-Box , Feminino , Humanos , Endodesoxirribonucleases , Neoplasias Ovarianas/genética , Fosforilação , Grânulos de Estresse/metabolismo , Proteína 1 de Ligação a Y-Box/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
4.
Nat Commun ; 15(1): 1892, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424107

RESUMO

Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear. Here, we show that single-stranded DNA physically interacts with PprI protease, which enhances the PprI-DdrO interactions as well as the DdrO cleavage in a length-dependent manner both in vivo and in vitro. Structures of PprI, in its apo and complexed forms with single-stranded DNA, reveal two DNA-binding interfaces shaping the cleavage site. Moreover, we show that the dynamic monomer-dimer equilibrium of PprI is also important for its cleavage activity. Our data provide evidence that single-stranded DNA could serve as the signal for DNA damage sensing in the metalloprotease/repressor system in bacteria. These results also shed light on the survival and acquired drug resistance of certain bacteria under antimicrobial stress through a SOS-independent pathway.


Assuntos
Deinococcus , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , DNA de Cadeia Simples/metabolismo , Dano ao DNA , Metaloproteases/química , Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338939

RESUMO

Deinococcus radiodurans is an extremophilic microorganism that possesses a unique DNA damage repair system, conferring a strong resistance to radiation, desiccation, oxidative stress, and chemical damage. Recently, we discovered that D. radiodurans possesses an N4-methylation (m4C) methyltransferase called M.DraR1, which recognizes the 5'-CCGCGG-3' sequence and methylates the second cytosine. Here, we revealed its cognate restriction endonuclease R.DraR1 and recognized that it is the only endonuclease specially for non-4C-methylated 5'-CCGCGG-3' sequence so far. We designated the particular m4C R.DraR1-M.DraR1 as the DraI R-M system. Bioinformatics searches displayed the rarity of the DraI R-M homologous system. Meanwhile, recombination and transformation efficiency experiments demonstrated the important role of the DraI R-M system in response to oxidative stress. In addition, in vitro activity experiments showed that R.DraR1 could exceptionally cleave DNA substrates with a m5C-methlated 5'-CCGCGG-3' sequence instead of its routine activity, suggesting that this particular R-M component possesses a broader substrate choice. Furthermore, an imbalance of the DraI R-M system led to cell death through regulating genes involved in the maintenance of cell survival such as genome stability, transporter, and energy production. Thus, our research revealed a novel m4C R-M system that plays key roles in maintaining cell viability and defending foreign DNA in D. radiodurans.


Assuntos
Deinococcus , Deinococcus/genética , Deinococcus/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Reparo do DNA , DNA/metabolismo , Estresse Oxidativo , Proteínas de Bactérias/metabolismo
6.
Nat Commun ; 14(1): 7699, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052788

RESUMO

Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Peptídeos , Proteínas , Minerais
7.
Protein Pept Lett ; 30(7): 597-607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37254539

RESUMO

BACKGROUND: Flap endonuclease 1 (FEN1), well known for its structural-specific nuclease, possessing 5'-flap endonuclease and 5'-3' exonuclease activities, is mainly involved in DNA replication and repair. Protein lysine acetylation is an important posttranslational modification that could regulate numerous proteins' activity, subcellular localization, protein-protein interaction etc., and influences many biological processes. Our previous studies on integrated succinylome profiles found that succinylation and acetylation levels of FEN1 would change under different conditions. Succinylation at FEN1 Lys200 site results in the accumulation of damaged DNA and increased susceptibility to fork-stalling agents. The interplay with other forms of modification could affects its protein interaction affinity and thus contribute to genome stability. OBJECTIVE: This article studied the biological role of FEN1 by acyl modification in HeLa cells. METHOD: In order to explore the function of FEN1 acylation in cells, we mimicked the presence or absence of acetylation or succinylation by mutating key amino acids to glutamic acid and glutamine. We carried out a series of experiments including cell cycle, MTS, enzyme kinetics measurements, immunofluorescence and so on. RESULTS: The absence of acylation of FEN1 leads to the blocked cell cycle process and the reduced efficiency of FEN1 on its DNA substrates, affecting the interaction of FEN1 with both repair and replication related proteins and thus its role in the repair of DNA damage. CONCLUSION: We have verified acyl groups could modify Lys125, Lys252 and Lys254 of FEN1. Acylation level of these three is important for enzyme activity, cell proliferation and DNA damage response, thus contributing to genome stability.


Assuntos
Reparo do DNA , DNA , Humanos , Células HeLa , DNA/metabolismo , Processamento de Proteína Pós-Traducional , Instabilidade Genômica , Proliferação de Células , Replicação do DNA , Endonucleases Flap/genética , Endonucleases Flap/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768763

RESUMO

Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 Å resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans.


Assuntos
Deinococcus , Molibdênio/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Adv Sci (Weinh) ; 9(33): e2202336, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251925

RESUMO

Nanoplastics are emerging pollutants of global concern. Agricultural soil is becoming a primary sink for nanoplastics generated from plastic debris. The uptake and accumulation of nanoplastics by crops contaminate the food chain and pose unexpected risks to human health. However, whether nanoplastics can enter grains and their impact on the grains of crop grown in contaminated soil is still unknown. Here, the translocation of polystyrene nanoplastics (PS-NPs) in crops, including peanut (Arachis hypogaea L.) and rice (Oryza sativa L.) is investigated. It is demonstrated PS-NPs translocation from the root and accumulation in the grains at the maturation stage. The treatment with PS-NPs (250 mg kg-1 ) increases the empty-shell numbers of rice grain by 35.45%, thereby decreasing the seed-setting rate of rice by 3.02%, and also decreases the average seed weight of peanuts by 3.45%. Moreover, PS-NPs exerted adverse effects on nutritional quality, such as decreasing the content of mineral elements, amino acids, and unsaturated fatty acids. To the knowledge, this is the first report of the presence of nanoplastics in the grains of crop plants grown in soil containing nanoplastics, and the results highlight the impact of nanoplastics on the yield and nutritional quality of crop grains.


Assuntos
Oryza , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Microplásticos , Solo/química , Oryza/química , Oryza/metabolismo , Poluição Ambiental , Arachis/metabolismo
10.
Protein Pept Lett ; 29(10): 891-899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35986527

RESUMO

BACKGROUND: Histone-like proteins are small molecular weight DNA-binding proteins that are widely distributed in prokaryotes. These proteins have multiple functions in cellular structures and processes, including the morphological stability of the nucleoid, DNA compactness, DNA replication, and DNA repair. Deinococcus radiodurans, an extremophilic microorganism, has extraordinary DNA repair capability and encodes an essential histone-like protein, DrHU. OBJECTIVE: We aim to investigate the phosphorylation regulation role of a histone-like HU protein from Deinococcus radiodurans. METHODS: LC-MS/MS analysis was used to determine the phosphorylation site of endogenous DrHU. The predicted structure of DrHU-DNA was obtained from homology modeling (Swissmodel) using Staphylococcus aureus HU-DNA structure (PDB ID: 4QJU) as the starting model. Two types of mutant proteins T37E and T37A were generated to explore their DNA binding affinity. Complemented-knockout strategy was used to generate the ΔDrHU/pk-T37A and ΔDrHU/pk-T37E strains for growth curves and phenotypical analyses. RESULTS AND DISCUSSION: The phosphorylation site Thr37, which is present in most bacterial HU proteins, is located at the putative protein-DNA interaction interface of DrHU. Compared to the wild-type protein, one in which this threonine is replaced by glutamate to mimic a permanent state of phosphorylation (T37E) showed enhanced double-stranded DNA binding but a weakened protective effect against hydroxyl radical cleavage. Complementation of T37E in a DrHU-knockout strain caused growth defects and sensitized the cells to UV radiation and oxidative stress. CONCLUSIONS: Phosphorylation modulates the DNA-binding capabilities of the histone-like HU protein from D. radiodurans, which contributes to the environmental adaptation of this organism.


Assuntos
Deinococcus , Deinococcus/genética , Deinococcus/química , Deinococcus/metabolismo , Fosforilação , Histonas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas de Bactérias/metabolismo , Reparo do DNA , DNA/química
11.
Structure ; 30(9): 1298-1306.e3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841886

RESUMO

DNA end resection mediated by the coordinated action of nuclease and helicase is a crucial step in initiating homologous recombination. The end-resection apparatus NurA nuclease and HerA helicase are present in both archaea and bacteria. Here, we report the cryo-electron microscopy structure of a bacterial HerA-NurA complex from Deinococcus radiodurans. The structure reveals a barrel-like hexameric HerA and a distinctive NurA dimer subcomplex, which has a unique extended N-terminal region (ENR) involved in bacterial NurA dimerization and activation. In addition to the long protruding linking loop and the C-terminal α helix of NurA, the flexible ENR is close to the HerA-NurA interface and divides the central channel of the DrNurA dimer into two halves, suggesting a possible mechanism of DNA end processing. In summary, this work provides new insights into the structure, assembly, and activation mechanisms of bacterial DNA end resection mediated by a minimal end-resection apparatus.


Assuntos
Proteínas Arqueais , Proteínas Arqueais/química , Bactérias/metabolismo , Microscopia Crioeletrônica , DNA , DNA Helicases/química , Reparo do DNA , Modelos Moleculares
12.
Microorganisms ; 10(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35744678

RESUMO

Holliday junctions (HJs) are four-way DNA structures, which are an important intermediate in the process of homologous recombination. In most bacteria, HJs are cleaved by specific nucleases called RuvC resolvases at the end of homologous recombination. Deinococcus radiodurans is an extraordinary radiation-resistant bacterium and is known as an ideal model organism for elucidating DNA repair processes. Here, we described the biochemical properties and the crystal structure of RuvC from D. radiodurans (DrRuvC). DrRuvC exhibited an RNase H fold that belonged to the retroviral integrase family. Among many DNA substrates, DrRuvC specifically bound to HJ DNA and cleaved it. In particular, Mn2+ was the preferred bivalent metal co-factor for HJ cleavage, whereas high concentrations of Mg2+ inhibited the binding of DrRuvC to HJ. In addition, DrRuvC was crystallized and the crystals diffracted to 1.6 Å. The crystal structure of DrRuvC revealed essential amino acid sites for cleavage and binding activities, indicating that DrRuvC was a typical resolvase with a characteristic choice for metal co-factor.

13.
Chembiochem ; 23(13): e202200143, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438823

RESUMO

DNA tagging with base analogues has found numerous applications. To precisely record the DNA labelling information, it would be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases following a mild, efficient and bioorthogonal chemical treatment. Here we reported such a DNA tag, N4 -allyldeoxycytidine (a4 dC), for labeling and identifying DNA by in vitro assays. The iodination of a4 dC led to fast and complete formation of 3, N4 -cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4 dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic marker N4 -methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4 dC. Our study sheds light on the design of next generation DNA tags with chemical sequencing power.


Assuntos
DNA , Nucleotídeos de Desoxicitosina , Epigenômica , Animais , DNA/genética , Epigênese Genética , Mamíferos
14.
J Nanobiotechnology ; 20(1): 191, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428303

RESUMO

BACKGROUND: Nanoplastics have been recently found widely distributed in our natural environment where ubiquitously bacteria are major participants in various material cycles. Understanding how nanoplastics interact with bacterial cell membrane is critical to grasp their uptake processes as well as to analyze their associated risks in ecosystems and human microflora. However, little is known about the detailed interaction of differentially charged nanoplastics with bacteria. The present work experimentally and theoretically demonstrated that nanoplastics enter into bacteria depending on the surface charges and cell envelope structural features, and proved the shielding role of membrane lipids against nanoplastics. RESULTS: Positively charged polystyrene nanoplastics (PS-NH2, 80 nm) can efficiently translocate across cell membranes, while negatively charged PS (PS-COOH) and neutral PS show almost no or much less efficacy in translocation. Molecular dynamics simulations revealed that the PS-NH2 displayed more favourable electrostatic interactions with bacterial membranes and was subjected to internalisation through membrane penetration. The positively charged nanoplastics destroy cell envelope of Gram-positive B. subtilis by forming membrane pore, while enter into the Gram-negative E. coli with a relatively intact envelope. The accumulated positively charged nanoplastics conveyed more cell stress by inducing a higher level of reactive oxygen species (ROS). However, the subsequently released membrane lipid-coated nanoplastics were nearly nontoxic to cells, and like wise, stealthy bacteria wrapped up with artifical lipid layers became less sensitive to the positively charged nanoplastics, thereby illustrating that the membrane lipid can shield the strong interaction between the positively charged nanoplastics and cells. CONCLUSIONS: Our findings elucidated the molecular mechanism of nanoplastics' interaction and accumulation within bacteria, and implied the shielding and internalization effect of membrane lipid on toxic nanoplastics could promote bacteria for potential plastic bioremediation.


Assuntos
Microplásticos , Nanopartículas , Ecossistema , Escherichia coli , Humanos , Lipídeos de Membrana , Nanopartículas/química , Poliestirenos/química
15.
Nat Commun ; 12(1): 3759, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145298

RESUMO

Pol µ is capable of performing gap-filling repair synthesis in the nonhomologous end joining (NHEJ) pathway. Together with DNA ligase, misincorporation of dGTP opposite the templating T by Pol µ results in a promutagenic T:G mispair, leading to genomic instability. Here, crystal structures and kinetics of Pol µ substituting dGTP for dATP on gapped DNA substrates containing templating T were determined and compared. Pol µ is highly mutagenic on a 2-nt gapped DNA substrate, with T:dGTP base pairing at the 3' end of the gap. Two residues (Lys438 and Gln441) interact with T:dGTP and fine tune the active site microenvironments. The in-crystal misincorporation reaction of Pol µ revealed an unexpected second dGTP in the active site, suggesting its potential mutagenic role among human X family polymerases in NHEJ.


Assuntos
Pareamento Incorreto de Bases/genética , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica/genética , Pareamento de Bases/genética , DNA/química , DNA Ligases/metabolismo , DNA Polimerase Dirigida por DNA/genética , Guanosina Trifosfato/química , Humanos
16.
Environ Pollut ; 284: 117127, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892465

RESUMO

Cadmium (Cd) and lead (Pb) are the major toxic heavy metals accumulated in rice and pose a serious threat to human health. The most important remediation strategy is to reduce the translocation of these heavy metals from polluted soil to rice. Bioremediation using microorganisms had been widely used for preventing environmental heavy metal pollution, and the interaction between microorganisms and plants is critical to reduce the heavy metal stress. In this study, we demonstrated that an extremophile Deinococcus radiodurans, especially its mutant strain-Δdr2577 which is deficient in cell surface-layer, could efficiently prevent the translocation and damages of Cd or Pb in rice. The bacterial cells efficiently removed Cd or Pb from culture medium. Following colonization of Δdr2577 cells in rice root, Cd level decreased to 71.6% in root and 60.9% in shoot, comparing to the plants treated with Cd alone; Pb level decreased to 73.3% in root and 56.9% in shoot, comparing to the plants treated with Pb alone. Meanwhile, the bacterial cells released their intracellular antioxidant-related molecules including glutamate and manganese ions into culture medium. Accumulation of glutamate and manganese ions detected in rice root and shoot ameliorate Cd/Pb-induced oxidative stress as indicated by reduced levels of ROS and enhanced activities of antioxidant enzymes in rice. Our results provide a potential application of an extremophile bacterium in alleviating heavy metal toxicity in rice. The main findings of the work reveal the interaction between the D. radiodurans and rice, as well as the alleviating mechanism of Cd and Pb toxicity through suppressing heavy metal accumulation and improving the antioxidant system in rice by the extremophile bacterium.


Assuntos
Deinococcus , Extremófilos , Metais Pesados , Oryza , Poluentes do Solo , Antioxidantes , Cádmio/análise , Cádmio/toxicidade , Deinococcus/genética , Humanos , Chumbo/toxicidade , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
Biochimie ; 185: 22-32, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33727139

RESUMO

Deinococcus radiodurans survives extraordinary doses of ionizing radiation and desiccation that cause numerous DNA strand breaks. D. radiodurans DNA polymerase A (DrPolA) is essential for reassembling the shattered genome, while its biochemical property has not been fully demonstrated. In this study, we systematically examined the enzymatic activities of DrPolA and characterized its unique features. DrPolA contains an N-terminal nuclease domain (DrPolA-NTD) and a C-terminal Klenow fragment (KlenDr). Compared with the Klenow fragment of E. coli Pol I, KlenDr shows higher fidelity despite the lacking of 3'-5' exonuclease proofreading activity and prefers double-strand DNA rather than Primer-Template substrates. Apart from the well-annotated 5'-3' exonuclease and flap endonuclease activities, DrPolA-NTD displays approximately 140-fold higher gap endonuclease activity than its homolog in E. coli and Human FEN1. Its 5'-3' exonuclease activity on ssDNA, gap endonuclease, and Holliday junction cleavage activities are greatly enhanced by Mn2+. The DrPolA-NTD deficient strain shows increased sensitivity to UV and gamma-ray radiation. Collectively, our results reveal distinct biochemical characteristics of DrPolA during DNA degradation and re-synthesis, which provide new insight into the outstanding DNA repair capacity of D. radiodurans.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase III/química , DNA Bacteriano/química , Deinococcus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Deinococcus/genética , Humanos
18.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33452031

RESUMO

Deinococcus radiodurans is an extreme bacterium with unparalleled resistance to oxidative stresses. Accumulation of intracellular Mn2+ complexing with small metabolites is the key contributor to the tolerance of D. radiodurans against oxidative stress. However, the intracellular reservoir of Mn ions and homeostatic regulation of the Mn complex in D. radiodurans remain unclear. We identified an evolutionarily ancient and negatively charged phosphate polymer (polyphosphate [PolyP]) in D. radiodurans We investigated PolyP metabolism in the response of D. radiodurans to oxidative stress. The genes dr1939, encoding polyphosphatase kinase (PPKDr; the subscript "Dr" refers to D. radiodurans), and dra0185, encoding exopolyphosphatase (PPXDr), were identified. PPXDr is a novel exopolyphosphatase with a cofactor preference to Mn2+, which enhances the dimerization and activity of PPXDr to allow the effective cleavage of PolyP-Mn. PPKDr and PPXDr exhibited different dynamic expression profiles under oxidative stress. First, ppkDr was upregulated leading to the accumulation of PolyP, which chelated large amounts of intracellular Mn ions. Subsequently, the expression level of ppkDr decreased while ppxDr was substantially upregulated and effectively hydrolyzed inactive PolyP-Mn to release phosphate (Pi) and Mn2+, which could form into Mn-Pi complexes to scavenge O2- and protect proteins from oxidative damage. Hence, dynamic cellular PolyP metabolites complexed with free Mn ions highlight a defense strategy of D. radiodurans in response to oxidative stress.IMPORTANCE The Mn-phosphate complex (Mn-Pi) plays a key role in the cellular resistance of radioresistant bacteria. The evolutionarily ancient polyphosphate polymers (polyphosphate [PolyP]) could effectively chelate Mn2+ and donate phosphates. However, the intracellular reservoir of Mn ions and homeostatic regulation of the Mn-Pi complex remain unclear. Here, we investigated the relationship of PolyP metabolites and Mn2+ homeostasis and how they function to defend against oxidative stress in the radioresistant bacterium Deinococcus radiodurans We found that PPXDr (the subscript "Dr" refers to D. radiodurans) is a novel exopolyphosphatase with a cofactor preference for Mn2+, mediating PolyP-Mn degradation into Pi and Mn ions. The formed Mn-Pi complexes effectively protect proteins. The dynamic PolyP metabolism coordinating with Mn ions is a defense strategy of D. radiodurans in response to oxidative stress. The findings not only provide new insights into the resistance mechanism of the extreme bacterium D. radiodurans but also broaden our understanding of the functions of PolyP metabolism in organisms.


Assuntos
Deinococcus/metabolismo , Extremófilos/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Polifosfatos/metabolismo , Íons/metabolismo
19.
Front Microbiol ; 12: 756867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154022

RESUMO

Proteins containing JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) domains that have Zn2+-dependent deubiquitinase (DUB) activity are ubiquitous across among all domains of life. Recently, a homolog in Deinococcus radiodurans, DRJAMM, was reported to possess the ability to cleave DRMoaD-MoaE. However, the detailed biochemical characteristics of DRJAMM in vitro and its biological mechanism in vivo remain unclear. Here, we show that DRJAMM has an efficient in vitro catalytic activity in the presence of Mn2+, Ca2+, Mg2+, and Ni2+ in addition to the well-reported Zn2+, and strong adaptability at a wide range of temperatures. Disruption of drJAMM led to elevated sensitivity in response to H2O2 in vivo compared to the wild-type R1. In particular, the expression level of MoaE, a product of DRJAMM cleavage, was also increased under H2O2 stress, indicating that DRJAMM is needed in the antioxidant process. Moreover, DRJAMM was also demonstrated to be necessary for dimethyl sulfoxide respiratory system in D. radiodurans. These data suggest that DRJAMM plays key roles in the process of oxidative resistance in D. radiodurans with multiple-choice of metal ions and temperatures.

20.
Comput Struct Biotechnol J ; 18: 2810-2817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133422

RESUMO

Deinococcus radiodurans can survive under extreme conditions, including high doses of DNA damaging agents and ionizing radiation, desiccation, and oxidative stress. Both the efficient cellular DNA repair machinery and antioxidation systems contribute to the extreme resistance of this bacterium, making it an ideal organism for studying the cellular mechanisms of environmental adaptation. The number of stress-related proteins identified in this bacterium has mushroomed in the past two decades. The newly identified proteins reveal both commonalities and diversity of structure, mechanism, and function, which impact a wide range of cellular functions. Here, we review the unique and general structural features of these proteins and discuss how these studies improve our understanding of the environmental stress adaptation mechanisms of D. radiodurans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA