Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636747

RESUMO

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.


Assuntos
Envelhecimento , Antioxidantes , Caenorhabditis elegans , Estresse Oxidativo , Polissacarídeos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Peso Molecular , Monossacarídeos/análise , Longevidade/efeitos dos fármacos
2.
Front Pharmacol ; 14: 1282077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044947

RESUMO

Background: Yuquan Pill (YQW) is a modern concentrated pill preparation of six herbs, namely, Ge Gen (Pueraria lobata Ohwi), Di huang (Rehmannia glutinosa Libosch.), Tian Huafen (Trichosanthes kirilowii Maxim.), Mai Dong (Ophiopogon japonicus (L. f.) Ker Gawl.), Wu Weizi (Schisandra chinensis (Turcz.) Baill.) and Gan Cao (Glycyrrhiza uralensis Fisch.). It is extensively used to treat type 2 diabetes-related glucose and lipid metabolism disorders. But what's the pharmacodynamic substance and how it works in the treatment of Type 2 diabetes mellitus (T2DM) are still unclear. Purpose: The purpose of this study is to determine the likely pharmacological components and molecular mechanism of YQW's intervention on T2DM by combining serum pharmacochemistry, network analysis and transcriptomics. Methods: The efficacy and prototypical components of blood entry were determined after oral administration of YQW aqueous solution to T2DM rats induced by high-fat feed and low-dose streptozotocin (STZ), and the key targets and pathways for these compounds to intervene in T2DM rats were predicted and integrated using network analysis and transcriptomics techniques. Results: In diabetic rats, YQW can lower TG, CHO, NO, and MDA levels (p < 0.05) while increasing HDL-C levels (p < 0.01), and protecting the liver and kidney. 22 prototype components (including puerarin, daidzein, 3'-methoxypuerarin, and liquiritigenin, among others) were found in the serum of rats after oral administration of YQW for 90 min, which might be used as a possible important ingredient for YQW to intervene in T2DM rats. 538 YQW pharmacodynamic components-related targets and 1,667 disease-related targets were projected through the PharmMapper database, with 217 common targets between the two, all of which were engaged in regulating PI3K-Akt, MAPK, Ras and FoxO signal pathway. Finally, the mRNA expression profiles of liver tissues from rats in the control, model, and YQW groups were investigated using high-throughput mRNA sequencing technology. YQW can regulate the abnormal expression of 89 differential genes in a disease state, including 28 genes with abnormally high expression and 61 genes with abnormally low expression. Five common genes (Kit, Ppard, Ppara, Fabp4, and Tymp) and two extensively used regulatory pathways (PI3K-Akt and MAPK signaling pathways) were revealed by the integrated transcriptomics and network analysis study. Conclusion: The mechanism of YQW's intervention in T2DM rats could be linked to 22 important components like puerarin, daidzein, and glycyrrhetinic acid further activating PI3K-Akt and MAPK signaling pathways by regulating key targets Kit, Ppard, Ppara, Fabp4, and Tymp, and thus improving lipid metabolism disorder, oxidative stress, and inflammation levels in T2DM rats. On the topic, more research into the pharmacological ingredient foundation and mechanism of YQW intervention in T2DM rats can be done.

3.
Front Microbiol ; 14: 1273902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928688

RESUMO

Human skin microbes play critical roles in skin health and diseases. Microbes colonizing on the skin of Tibetans living in the high-altitude area for generations may have a stronger ability to resist the harsh environment, such as high ultraviolet radiation (UV). Isolation of a potential probiotic from Tibetans skin is beneficial for resistance of skin disease for humans in the world. In this study, the signature microbiota for Tibetan skin were characterized compared to low-altitude humans. Next, using culture-omics, 118 species were isolated. The culturability of high-altitude of Tibetan skin microbiome reached approximate 66.8%. Next, we found that one strain, Pantoea eucrina, had the greatest ability to repair UV damage to the skin as the lowest pathological score was observed in this group. Interestingly, another animal trial found this bacterium resisted UV rather than its metabolites. Using whole genome sequencing, this strain P. eucrina KBFS172 was confirmed, and its functions were annotated. It might involve in the metabolic pathway of carotenoid biosynthesis with anti-oxidative stress properties, which plays critical roles in UV-damage repair. In conclusion, we characterized the signature microbes of skin in high-altitude Tibetans, isolated a skin bacterium of Pantoea eucrina KBFS172 which could repair UV damage via involving the metabolic pathway of carotenoid biosynthesis. Our results provide a new potential skin probiotic for skin disease prevention or sunburn.

4.
Anal Chem ; 94(50): 17431-17438, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36495265

RESUMO

Nanopore sensing is blooming due to its label-free and high sensitivity features. As a novel nanopore, a droplet is formed at the orifice of a dual-nanopipette, which allows for the translocation of analytes through the two channels at a relatively low speed and the promotion of signal-to-noise ratio. However, nanopore sensing based on the principle of current blockage requires the pore size to be comparable to that of the single entity, which poses a huge challenge for the direct detection of small molecules. In this work, gold nanoparticles (Au NPs) modified with sulfhydryl poly(ethylene glycol) (PEG-SH) or aptamers were detected successfully. The size difference of Au NPs and the interaction between Au NPs and dual-nanopipettes could be distinguished sensitively. Furthermore, Au NPs modified with designed aptamers will produce different blocking current after capturing the corresponding small molecules (e.g., dopamine and serotonin). Even non-electroactive ions, such as potassium ions, can also be detected, which is difficult to sense based on redox reactions, and further illustrates that the change of surface properties of nanoparticles is responsible for the detection. This work expands the application of nanopipette sensing for Au NPs and provides a universal platform for the small-molecule detection, which has the potential application in biosensing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoporos , Ouro , Polietilenoglicóis
5.
Scand J Gastroenterol ; 57(4): 465-472, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978498

RESUMO

Objective: Targeted deep sequencing was used to characterize the mutational spectrum of APC in Chinese colorectal tumors in comparison to that in Caucasians from The Cancer Genome Atlas (TCGA) and to investigate whether APC mutations can predict overall survival in CRC patients receiving adjuvant chemotherapy.Methods: A total of 315 Chinese CRC patients including 241 stage II/III patients receiving fluorouracil-based adjuvant chemotherapy were included in this study. Next generation sequencing was carried out to detect somatic mutations on all APC exons. The associations between APC mutations and overall survival were determined by the Cox proportional hazards model.Results:APC was mutated in 221 of 315 colorectal tumors (70.2%). Chinese CRC had a much higher frequency of missense mutations (16.2% vs. 2.4%), but a lower frequency of nonsense (41.0% vs. 54.2%) and frameshift mutations (10.5% vs. 18.4%) than Caucasian CRC. Among stage II/III patients receiving fluorouracil-based adjuvant chemotherapy, APC mutations showed a significant association with worse survival (HR = 1.69; 95% CI, 1.10-2.62; p = .0179). Of the mutation types, frameshift mutations conferred the highest risk of death (HR = 2.88; 95% CI, 1.54-5.37; p =.0009). Among individual mutation sites, Arg232Ter, the most frequent mutation in Chinese CRC, exhibited the strongest negative impact on survival (HR = 2.65; 95% CI, 1.16-6.03; p =.0202).Conclusion:APC overall mutation was an independent predictor for overall survival of stage II/III CRC patients receiving fluorouracil-based chemotherapy.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Fluoruracila , Proteína da Polipose Adenomatosa do Colo/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante , China , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila/administração & dosagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Estadiamento de Neoplasias , Prognóstico
6.
Cancer Commun (Lond) ; 41(8): 726-746, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34268906

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most malignant tumors with high incidence, yet its molecular mechanism is not fully understood, hindering the development of targeted therapy. Metabolic abnormalities are a hallmark of cancer. Targeting dysregulated metabolic features has become an important direction for modern anticancer therapy. In this study, we aimed to identify a new metabolic enzyme that promotes proliferation of CRC and to examine the related molecular mechanisms. METHODS: We performed RNA sequencing and tissue microarray analyses of human CRC samples to identify new genes involved in CRC. Squalene epoxidase (SQLE) was identified to be highly upregulated in CRC patients. The regulatory function of SQLE in CRC progression and the therapeutic effect of SQLE inhibitors were determined by measuring CRC cell viability, colony and organoid formation, intracellular cholesterol concentration and xenograft tumor growth. The molecular mechanism of SQLE function was explored by combining transcriptome and untargeted metabolomics analysis. Western blotting and real-time PCR were used to assess MAPK signaling activation by SQLE. RESULTS: SQLE-related control of cholesterol biosynthesis was highly upregulated in CRC patients and associated with poor prognosis. SQLE promoted CRC growth in vitro and in vivo. Inhibition of SQLE reduced the levels of calcitriol (active form of vitamin D3) and CYP24A1, followed by an increase in intracellular Ca2+ concentration. Subsequently, MAPK signaling was suppressed, resulting in the inhibition of CRC cell growth. Consistently, terbinafine, an SQLE inhibitor, suppressed CRC cell proliferation and organoid and xenograft tumor growth. CONCLUSIONS: Our findings demonstrate that SQLE promotes CRC through the accumulation of calcitriol and stimulation of CYP24A1-mediated MAPK signaling, highlighting SQLE as a potential therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais , Esqualeno Mono-Oxigenase , Calcitriol , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Esqualeno Mono-Oxigenase/genética , Vitamina D3 24-Hidroxilase
7.
Front Microbiol ; 8: 1929, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056930

RESUMO

While the skin microbiome has been shown to play important roles in health and disease in several species, the effects of altitude on the skin microbiome and how high-altitude skin microbiomes may be associated with health and disease states remains largely unknown. Using 16S rRNA marker gene sequencing, we characterized the skin microbiomes of people from two racial groups (the Tibetans and the Hans) and of three local pig breeds (Tibetan pig, Rongchang pig, and Qingyu pig) at high and low altitudes. The skin microbial communities of low-altitude pigs and humans were distinct from those of high-altitude pigs and humans, with five bacterial taxa (Arthrobacter, Paenibacillus, Carnobacterium, and two unclassified genera in families Cellulomonadaceae and Xanthomonadaceae) consistently enriched in both pigs and humans at high altitude. Alpha diversity was also significantly lower in skin samples collected from individuals living at high altitude compared to individuals at low altitude. Several of the taxa unique to high-altitude humans and pigs are known extremophiles adapted to harsh environments such as those found at high altitude. Altogether our data reveal that altitude has a significant effect on the skin microbiome of pigs and humans.

8.
Curr Biol ; 26(18): R832-R833, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27676296

RESUMO

An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Longevidade , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA