Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Plant Biol ; 20(1): 498, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129252

RESUMO

BACKGROUND: Cuticular wax plays important role in protecting plants from drought stress. In Arabidopsis WRI4 improves drought tolerance by regulating the biosynthesis of fatty acids and cuticular wax. Cyperus esculentus (yellow nutsedge) is a tough weed found in tropical and temperate zones as well as in cooler regions. In the current study, we report the molecular cloning of a WRI4-like gene from Cyperus esculentus and its functional characterization in Arabidopsis. RESULTS: Using RACE PCR, full-length WRI-like gene was amplified from yellow nutsedge. Phylogenetic analyses and amino acid comparison suggested it to be a WRI4-like gene. According to the tissue-specific expression data, the highest expression of WRI4-like gene was found in leaves, followed by roots and tuber. Transgenic Arabidopsis plants expressing nutsedge WRI4-like gene manifested improved drought stress tolerance. Transgenic lines showed significantly reduced stomatal conductance, transpiration rate, chlorophyll leaching, water loss and improved water use efficiency (WUE). In the absence of drought stress, expression of key genes for fatty acid biosynthesis was not significantly different between transgenic lines and WT while that of cuticular wax biosynthesis genes was significantly higher in transgenic lines than WT. The PEG-simulated drought stress significantly increased expression of key genes for fatty acid as well as wax biosynthesis in transgenic Arabidopsis lines but not in WT plants. Consistent with the gene expression data, cuticular wax load and deposition was significantly higher in stem and leaves of transgenic lines compared with WT under control as well as drought stress conditions. CONCLUSIONS: WRI4-like gene from Cyperus esculentus improves drought tolerance in Arabidopsis probably by promoting cuticular wax biosynthesis and deposition. This in turn lowers chlorophyll leaching, stomatal conductance, transpiration rate, water loss and improves water use efficiency under drought stress conditions. Therefore, CeWRI4-like gene could be a good candidate for improving drought tolerance in crops.


Assuntos
Arabidopsis/fisiologia , Cyperus/genética , Genes de Plantas/genética , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Ceras/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Cyperus/fisiologia , Desidratação , Ácidos Graxos/metabolismo , Genes de Plantas/fisiologia , Filogenia , Epiderme Vegetal/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Transpiração Vegetal , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
2.
Crit Rev Biotechnol ; 40(6): 777-786, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32605455

RESUMO

Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.


Assuntos
Produtos Agrícolas , Ácidos Graxos , Edição de Genes/métodos , Óleos de Plantas , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo
3.
BMC Plant Biol ; 19(1): 419, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604421

RESUMO

BACKGROUND: Eruca vesicaria subsp. sativa is one of the Cruciferae species most tolerant to drought stress. In our previous study some extremely drought-tolerant/sensitive Eruca lines were obtained. However little is known about the mechanism for drought tolerance in Eruca. METHODS: In this study two E. vesicaria subs. sativa lines with contrasting drought tolerance were treated with liquid MS/PEG solution. Total RNA was isolated from 7-day old whole seedlings and then applied to Illumina sequencing platform for high-throughput transcriptional sequencing. RESULTS: KEGG pathway analysis indicated that differentially expressed genes (DEGs) involved in alpha-Linolenic acid metabolism, Tyrosine metabolism, Phenylalanine, Tyrosine and tryptophan biosynthesis, Galactose metabolism, Isoquinoline alkaloid biosynthesis, Tropane, Piperidine and pyridine alkaloid biosynthesis, Mineral absorption, were all up-regulated specifically in drought-tolerant (DT) Eruca line under drought stress, while DEGs involved in ribosome, ribosome biogenesis, Pyrimidine metabolism, RNA degradation, Glyoxylate and dicarboxylate metabolism, Aminoacyl-tRNA biosynthesis, Citrate cycle, Methane metabolism, Carbon fixation in photosynthetic organisms, were all down-regulated. 51 DEGs were found to be most significantly up-regulated (log2 ratio ≥ 8) specifically in the DT line under PEG treatment, including those for ethylene-responsive transcription factors, WRKY and bHLH transcription factors, calmodulin-binding transcription activator, cysteine-rich receptor-like protein kinase, mitogen-activated protein kinase kinase, WD repeat-containing protein, OPDA reductase, allene oxide cyclase, aquaporin, O-acyltransferase WSD1, C-5 sterol desaturase, sugar transporter ERD6-like 12, trehalose-phosphate phosphatase and galactinol synthase 4. Eight of these 51 DEGs wre enriched in 8 COG and 17 KEGG pathways. CONCLUSIONS: DEGs that were found to be most significantly up-regulated specifically in the DT line under PEG treatment, up-regulation of DEGs involved in Arginine and proline metabolism, alpha-linolenic acid metabolism and down-regulation of carbon fixation and protein synthesis might be critical for the drought tolerance in Eruca. These results will be valuable for revealing mechanism of drought tolerance in Eruca and also for genetic engineering to improve drought tolerance in crops.


Assuntos
Brassicaceae/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Polietilenoglicóis/administração & dosagem , Estresse Fisiológico/fisiologia , Transcriptoma/fisiologia , Brassicaceae/genética , Secas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Estresse Fisiológico/genética
4.
BMC Plant Biol ; 16(1): 139, 2016 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-27317011

RESUMO

BACKGROUND: The allohexaploid Crambe abyssinica (crambe) is an oilseed crop that has been recognized for its potential value in the chemical industry, particularly in terms of producing high-erucic acid content vegetable oil. However, as an understudied crop, improvement of crambe has been hampered by the lack of genetic and genomic information to enhance its yield, oil quality and resistance against biotic and abiotic stress. Development of molecular markers is therefore of great significance to facilitate genetic improvement of crambe. RESULTS: In this study, high-throughput sequencing was performed to generate sequences for the transcriptome and genome of a widely planted crambe cultivar, Galactica. A total of 186,778 expressed sequence tag (EST) contigs as 8,130,350 genomic contigs were assembled as well. Altogether, 82,523 pairs of primers were designed in the flanking sequences of the simple sequence repeat (SSR) within these contigs. Virtual PCR analysis showed that a fraction of these primers could be mapped onto the genomes of related species of Brassica, including Brassica rapa, B. oleraceae and B. napus. Genetic diversity analysis using a subset of 166 markers on 30 independent C. abyssinica accessions exhibited that 1) 95 % of the designed SSRs were polymorphic among these accessions; 2) the polymorphism information content (PIC) value of the markers ranged from 0.13 to 0.89; 3) the genetic distances (coefficient NEI72) between accessions varied from 0.06 to 0.36. Cluster analysis subsequent on the accessions demonstrated consistency with crambe breeding history. F-statistics analysis revealed a moderate level of genetic differentiation in C. abyssinica (Gst = 0.3934) and a accordingly low estimated gene flow (Nm = 0.7709). CONCLUSION: Application of high-throughput sequencing technology has facilitated SSR marker development, which was successfully employed in evaluating genetic diversity of C. abyssinica as demonstrated in our study. Results showed these molecular markers were robust and provided powerful tools for assessing genetic diversity and estimating crambe breeding history. Moreover, the SSR primers and sequence information developed in the study are freely available to the research community.


Assuntos
Crambe (Planta)/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Brassica/genética , Crambe (Planta)/classificação , Etiquetas de Sequências Expressas , Marcadores Genéticos , Polimorfismo Genético
5.
Sci Rep ; 6: 22181, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916792

RESUMO

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.


Assuntos
Reatores Biológicos , Brassicaceae/metabolismo , Produtos Agrícolas/metabolismo , Engenharia Metabólica , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Brassicaceae/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
7.
Sci Rep ; 5: 14033, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26358007

RESUMO

The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera.


Assuntos
Vetores Genéticos/genética , Meristema , Regeneração , Traqueófitas/fisiologia , Transformação Genética , DNA Bacteriano/genética , Dexametasona/farmacologia , Fluoruracila/farmacologia , Meristema/efeitos dos fármacos , Fenótipo , Plantas Geneticamente Modificadas , Recombinação Genética , Traqueófitas/efeitos dos fármacos
8.
BMC Biotechnol ; 15: 35, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013561

RESUMO

BACKGROUND: The thermophilic filamentous fungus Myceliophthora thermophila has many suitable characteristics for industrial biotechnology and could be a promising new chassis system for synthetic biology, particularly the ATCC 42464 strain, whose genome was sequenced in 2011. However, metabolic engineering of this strain using genetic approaches has not been reported owing to a lack of genetic tools for this organism. RESULTS: In the present study, we developed a high efficiency Agrobacterium tumefaciens mediated transformation system for M. thermophila, including an approach for targeted gene deletion using green fluorescence protein (GFP) as a marker for selection. Up to 145 transformants per 10(5) conidia were obtained in one transformation plate. Moreover, a ku70 deletion mutant was constructed in the ATCC 42464 background using the tools developed in present study and subsequently characterized. The ku70 deletion construct was designed using resistance to phosphinothricin as the selection marker. Additionally, a GFP-encoding cassette was incorporated that allowed for the selection of site-specific (no fluorescence) or ectopic (fluorescence) integration of the ku70 construct. Transformants with ectopically integrated ku70 deletion constructs were therefore identified using the fluorescent signal of GFP. PCR and Southern blotting analyses of non-fluorescent putative ku70 deletion transformants revealed all 11 tested transformants to be correct deletions. The deletion frequency in a pool of 116 transformants analyzed was 58 %. Moreover, the homologous rate improved about 3 folds under ku70 mutant using the pyrG as a test gene to disrupt in M. thermophila. CONCLUSIONS: We successfully developed an efficient transformation and target gene disruption approach for M. thermophila ATCC 42464 mediated by A. tumefaciens. The tools and the ku70 deletion strain developed here should advance the development of M. thermophila as an industrial host through metabolic engineering and accelerate the elucidation of the mechanism of rapid cellulose degradation in this thermophilic fungus.


Assuntos
Agrobacterium tumefaciens/genética , Antígenos Nucleares/genética , Proteínas de Ligação a DNA/genética , Sordariales/genética , Transformação Genética , Celulose/metabolismo , DNA Fúngico/genética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Autoantígeno Ku , Sordariales/crescimento & desenvolvimento
9.
Plant Biotechnol J ; 13(4): 471-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25393152

RESUMO

Crambe abyssinica is a hexaploid oil crop for industrial applications. An increase of erucic acid (C22:1) and reduction of polyunsaturated fatty acid (PUFA) contents in crambe oil is a valuable improvement. An increase in oleic acid (C18:1), a reduction in PUFA and possibly an increase in C22:1 can be obtained by down-regulating the expression of fatty acid desaturase2 genes (CaFAD2), which code for the enzyme that converts C18:1 into C18:2. We conducted EMS-mutagenesis in crambe, followed by Illumina sequencing, to screen mutations in three expressed CaFAD2 genes. Two novel analysis strategies were used to detect mutation sites. In the first strategy, mutation detection targeted specific sequence motifs. In the second strategy, every nucleotide position in a CaFAD2 fragment was tested for the presence of mutations. Seventeen novel mutations were detected in 1100 one-dimensional pools (11 000 individuals) in three expressed CaFAD2 genes, including non-sense mutations and mis-sense mutations in CaFAD2-C1, -C2 and -C3. The homozygous non-sense mutants for CaFAD2-C3 resulted in a 25% higher content of C18:1 and 25% lower content of PUFA compared to the wild type. The mis-sense mutations only led to small changes in oil composition. Concluding, targeted mutation detection using NGS in a polyploid was successfully applied and it was found that a non-sense mutation in even a single CaFAD2 gene can lead to changes in crambe oil composition. Stacking the mutations in different CaFAD2 may gain additional changes in C18:1 and PUFA contents.


Assuntos
Crambe (Planta)/genética , Ácidos Graxos Dessaturases/genética , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Óleos de Plantas/metabolismo , Crambe (Planta)/metabolismo
10.
BMC Plant Biol ; 14: 235, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25195944

RESUMO

BACKGROUND: Crambe abyssinica (crambe) is a non-food oil seed crop. Its seed oil is widely used in the chemical industry because of the high erucic acid content. Furthermore, it is a potential platform for various feedstock oils for industrial uses based on genetic modification. Here, we describe the development of a series of protocols for all steps required in the process of generating genetically modified crambe. RESULTS: Different explant types from crambe seedlings were tested for shoot regeneration using different hormone-combinations. Cotyledonary nodes on basic medium with 0.5 µM NAA and 2.2 µM BAP gave the highest regeneration percentages. For propagation by tissue culture, explants of stems, petioles, leaves and axillary buds of in vitro plantlets were tested using the optimized medium. Axillary buds showed the highest shoot proliferation efficiency. Cotyledonary nodes were used to test the proper concentration of kanamycin for selection of transformation events, and 10 to 25 mg · L(-1) were identified as effective. The cotyledonary nodes and cotyledons from 7-day-old seedlings were used in Agrobacterium-mediated transformations with two kinds of selection strategies, shifting or consistent. Using the shifting selection method (10 mg · L(-1) kanamycin, 25 mg · L(-1), then back to 10 mg · L(-1)) cotyledonary nodes gave 10% transformation frequency, and cotyledons 4%, while with the consistent method (25 mg · L(-1)) lower frequencies were found, 1% for cotyledonary nodes and 0% for cotyledons). Later, in vitro plant axillary buds were tried as explants for transformation, however, transformation frequency was low ranging from 0.5 to 2%. Overall, testing six different vectors and two kinds of Agrobacterium strains, the average transformation frequency using the shifting method was 4.4%. Determining T-DNA insertion numbers by Southern blotting showed that approximately 50% of the transgenic lines had a single-copy insertion. CONCLUSIONS: Present research revealed the potential of using crambe meristematic tissue for genetic transformation and in vitro propagation. The most efficient method of transformation used cotyledonary node explants from 7-days-old seedlings with a shifting kanamycin selection. Meristematic tissues (cotyledonary node or axillary bud) had the highest ability for shoot proliferation. Single-copy T-DNA insert lines could be efficiently and reproducibly generated.


Assuntos
Crambe (Planta)/genética , Crambe (Planta)/fisiologia , Transformação Genética , Agrobacterium , Cotilédone/genética , Cotilédone/fisiologia , DNA Bacteriano/genética , Vetores Genéticos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Regeneração , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia
11.
BMC Plant Biol ; 13: 146, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083776

RESUMO

BACKGROUND: Crambe abyssinica produces high erucic acid (C22:1, 55-60%) in the seed oil, which can be further increased by reduction of polyunsaturated fatty acid (PUFA) levels. The omega-6 fatty acid desaturase enzyme (FAD2) is known to be involved in PUFA biosynthesis. In crambe, three CaFAD2 genes, CaFAD2-C1, CaFAD2-C2 and CaFAD2-C3 are expressed. RESULTS: The individual effect of each CaFAD2 gene on oil composition was investigated through studying transgenic lines (CaFAD2-RNAi) for differential expression levels in relation to the composition of seed-oil. Six first generation transgenic plants (T1) showed C18:1 increase (by 6% to 10.5%) and PUFA reduction (by 8.6% to 10.2%). The silencing effect in these T1-plants ranged from the moderate silencing (40% to 50% reduction) of all three CaFAD2 genes to strong silencing (95% reduction) of CaFAD2-C3 alone. The progeny of two T1-plants (WG4-4 and WG19-6) was further analysed. Four or five transgene insertions are characterized in the progeny (T2) of WG19-6 in contrast to a single insertion in the T2 progeny of WG4-4. For the individual T2-plants of both families (WG19-6 and WG4-4), seed-specific silencing of CaFAD2-C1 and CaFAD2-C2 was observed in several individual T2-plants but, on average in both families, the level of silencing of these genes was not significant. A significant reduction in expression level (P < 0.01) in both families was only observed for CaFAD2-C3 together with significantly different C18:1 and PUFA levels in oil. CONCLUSIONS: CaFAD2-C3 expression is highly correlated to levels of C18:1 (r = -0.78) and PUFA (r = 0.75), which suggests that CaFAD2-C3 is the most important one for changing the oil composition of crambe.


Assuntos
Crambe (Planta)/enzimologia , Crambe (Planta)/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Proteínas de Plantas/metabolismo , Crambe (Planta)/genética , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
12.
J Biol Chem ; 280(41): 34626-34, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16020547

RESUMO

A gene encoding a sterol ester-synthesizing enzyme was identified in Arabidopsis. The cDNA of the Arabidopsis gene At1g04010 (AtPSAT) was overexpressed in Arabidopsis behind the cauliflower mosaic virus 35S promoter. Microsomal membranes from the leaves of overexpresser lines catalyzed the transacylation of acyl groups from phosphatidylethanolamine to sterols. This activity correlated with the expression level of the AtPSAT gene, thus demonstrating that this gene encodes a phospholipid:sterol acyltransferase (PSAT). Properties of the AtPSAT were examined in microsomal fractions from the tissues of an overexpresser. The enzyme did not utilize neutral lipids, had the highest activity with phosphatidylethanolamine, had a 5-fold preference for the sn-2 position, and utilized both saturated and unsaturated fatty acids. Various sterols and sterol intermediates, including triterpenic precursors, were acylated by the PSAT, whereas other triterpenes were not. Sterol selectivity studies showed that the enzyme is activated by end product sterols and that sterol intermediates are preferentially acylated by the activated enzyme. This indicates that PSAT both regulates the pool of free sterols as well as limits the amount of free sterol intermediates in the membranes. Two T-DNA insertion mutants in the AtPSAT gene, with strongly reduced (but still measurable) levels of sterol esters in their tissues, had no detectable PSAT activity in the microsomal fractions, suggesting that Arabidopsis possess other enzyme(s) capable of acylating sterols. The AtPSAT is the only intracellular enzyme found so far that catalyzes an acyl-CoA-independent sterol ester formation. Thus, PSAT has a similar physiological function in plant cells as the unrelated acyl-CoA:sterol acyltransferase has in animal cells.


Assuntos
Aciltransferases/química , Arabidopsis/genética , Arabidopsis/metabolismo , Ésteres/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Esterol O-Aciltransferase/fisiologia , Esteróis/química , Aciltransferases/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Bacteriano/química , DNA Complementar/metabolismo , Vetores Genéticos , Membranas Intracelulares/metabolismo , Lipídeos/química , Microssomos/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Plantas/genética , Plantas/metabolismo , Regiões Promotoras Genéticas , RNA/química , RNA/metabolismo , Esterol O-Aciltransferase/química , Especificidade por Substrato
13.
Plant Physiol ; 135(3): 1324-35, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247387

RESUMO

A new pathway for triacylglycerol biosynthesis involving a phospholipid:diacylglycerol acyltransferase (PDAT) was recently described (Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S, [2000] Proc Natl Acad Sci USA 97: 6487-6492). The LRO1 gene that encodes the PDAT was identified in yeast (Saccharomyces cerevisiae) and shown to have homology with animal lecithin:cholesterol acyltransferase. A search of the Arabidopsis genome database identified the protein encoded by the At5g13640 gene as the closest homolog to the yeast PDAT (28% amino acid identity). The cDNA of At5g13640 (AtPDAT gene) was overexpressed in Arabidopsis behind the cauliflower mosaic virus promoter. Microsomal preparations of roots and leaves from overexpressers had PDAT activities that correlated with expression levels of the gene, thus demonstrating that this gene encoded PDAT (AtPDAT). The AtPDAT utilized different phospholipids as acyl donor and accepted acyl groups ranging from C10 to C22. The rate of activity was highly dependent on acyl composition with highest activities for acyl groups containing several double bonds, epoxy, or hydroxy groups. The enzyme utilized both sn-positions of phosphatidylcholine but had a 3-fold preference for the sn-2 position. The fatty acid and lipid composition as well as the amounts of lipids per fresh weight in Arabidopsis plants overexpressing AtPDAT were not significantly different from the wild type. Microsomal preparations of roots from a T-DNA insertion mutant in the AtPDAT gene had barely detectable capacity to transfer acyl groups from phospholipids to added diacylglycerols. However, these microsomes were still able to carry out triacylglycerol synthesis by a diacylglycerol:diacylglycerol acyltransferase reaction at the same rate as microsomal preparations from wild type.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Aciltransferases/química , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Clonagem Molecular , Primers do DNA , Diacilglicerol O-Aciltransferase , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Especificidade por Substrato
14.
Yi Chuan Xue Bao ; 29(5): 467-70, 2002 May.
Artigo em Chinês | MEDLINE | ID: mdl-12043578

RESUMO

Crosses of Ogura CMS Brassica campestris var. purpuraria x Raphanus sativus x Brassica napus were made and four hybrids were produced. One plant (PRN-1) was mosaic with yellow and milk white flowers and some flowers had both yellow and white petals. The others (PRN-2, -3, -4) had white flowers. PRN-4 had degenerated anthers, the other three had three to six anthers and could produce some pollens, but the pollens of PRN-2 were unstainable by I2-KI solution. PRN-2 had four normal honey glands, PRN-1 and PRN-3 had two, and PRN-4 had none. PRN-2 had normal leaf color and the other three showed different degrees of chlorophyll deficiency at low temperature. The chromosome number of PRN-1 was 2n = 38 and had the mean chromosome paring configuration of 14.67 I + 10.07 II + 1.06 III, and its chromosome set constitution might be AACR. This chromosome constitution may be due to the fertilization of female gamete of n = 19 (AR) with male gamete of n = 19 (AC) from B. napus. The occurrence of mosaic flower color in this plant may be attributed to the chromosome abnormalities caused by wide hybridization, such as chromosome deficiency and the formation of chromosome fragments and chromosome bridges. The chromosome number of PRN-2 was 2n = 35 and the mean chromosome paring configuration was 13.89 I + 8.33 II + 1.33 III + 0.11 IV. The chromosome number of PRN-3 was 2n = 33 and the mean chromosome paring configuration was 14.00 I + 7.82 II + 1.00 III + 0.09 IV. The chromosome number of PRN-4 was not determined as there was no pollen mother cell formation. Chromosome bridges and laggards were observed in PRN-1-3. Some seeds were harvested from PRN-1-3 but none was harvested from PRN-4 when backcrossed with B. napus. It seems possible for us to overcome the chlorophyll deficiency and honey gland abnormality and restore the male fertility in Ogura CMS by introduction of the nucleus of R. sativus into this cytoplasmic male sterile line.


Assuntos
Brassica/genética , Estruturas Vegetais/genética , Aneuploidia , Brassica/crescimento & desenvolvimento , Análise Citogenética , Fertilidade/genética , Hibridização Genética , Pigmentação/genética , Estruturas Vegetais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA