Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35115, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165928

RESUMO

Problem: Previous studies had confirmed that some deep learning models had high diagnostic performance in staging liver fibrosis. However, training efficiency of models predicting liver fibrosis need to be improved to achieve rapid diagnosis and precision medicine. Aim: The deep learning framework of EfficientNetV2-S was noted because of its faster training speed and better parameter efficiency compared with other models. Our study sought to develop noninvasive predictive models based on EfficientNetV2-S framework for staging liver fibrosis. Methods: Patients with chronic liver disease who underwent multi-parametric abdominal MRI were included in the retrospective study. Data augmentation methods including horizontal flip, vertical flip, perspective transformation and edge enhancement were applied to multi-parametric MR images to solve the data imbalance between different liver fibrosis groups. The EfficientNetV2-S models were used for the prediction of liver fibrosis stages F1-2, F1-3, F3, F4 and F3-4. We evaluated the diagnostic performance of our models in training, validation, and test sets by using receiver operating characteristic curve (ROC) analysis. Results: The total training time of EfficientNetV2-S was about 6 h. For differentiating of F1-2 vs F3, the accuracy, sensitivity and specificity of EfficientNetV2-S model were 96.2 %, 96.4 % and 96.0 % in the test set. The AUC in test set was 0.559. The accuracy, sensitivity and specificity were 82.1 %, 74.5 % and 89.6 % in the test set by using EfficientNetV2-S model to differentiate F1-2 vs F3-4, and the AUC in test set were 0.763. For differentiating F1-3 vs F4, the accuracy, sensitivity and specificity of EfficientNetV2-S model were 71.5 %, 73.4 % and 69.5 % in the test set. The AUC was 0.553 in test set. For differentiating F1-2 vs F4, the accuracy, sensitivity and specificity of our model were 84.3 %, 80.2 % and 88.3 % in the test set, and the AUC was 0.715, respectively. For differentiating F3 vs F4, the accuracy, sensitivity and specificity of EfficientNetV2-S model were 92.5 %, 89.1 % and 95.6 % in the test set, and the AUC was 0.696 in the test set. Conclusions: The EfficientNetV2-S models based on multi-parametric MRI had the feasibility for staging of liver fibrosis because they showed high training speed and diagnostic performance in our study.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387508

RESUMO

The integrated landscape of ferroptosis regulatory patterns and their association with colon microenvironment have been demonstrated in recent studies. However, the ferroptosis-related immunotherapeutic signature for colon cancer (CC) remains unclear. We comprehensively evaluated 1623 CC samples, identified patterns of ferroptosis modification based on ferroptosis-associated genes, and systematically correlated these patterns with tumor microenvironment (TME) cell infiltration characteristics. In addition, the ferroptosis-regulated gene score (FRG-score) was constructed to quantify the pattern of ferroptosis alterations in individual tumors. Three distinct patterns of ferroptosis modification were identified, including antioxidant defense, iron toxicity, and lipid peroxidation. The characteristics of TME cell infiltration under these three patterns were highly consistent with the three immune phenotypes of tumors, including immune-inflamed, immune-excluded and immune-desert phenotypes. We also demonstrated that evaluation of ferroptosis regulatory patterns within individual tumors can predict tumor inflammatory status, tumor subtype, TME stromal activity, genetic variation, and clinical outcome. Immunotherapy cohorts confirmed that patients with low FRG-scores showed remarkable therapeutic and clinical benefits. Furthermore, the hub gene apolipoprotein L6 (APOL6), a drug-sensitive target associated with cancer cell ferroptosis, was identified through our proposed novel key gene screening process and validated in CC cell lines and scRNA-seq.


Assuntos
Neoplasias do Colo , Ferroptose , Humanos , Ferroptose/genética , Microambiente Tumoral/genética , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Antioxidantes , Imunoterapia
3.
Abdom Radiol (NY) ; 49(4): 1165-1174, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219254

RESUMO

OBJECTIVES: To develop and compare radiomics model and fusion model based on multiple MR parameters for staging liver fibrosis in patients with chronic liver disease. MATERIALS AND METHODS: Patients with chronic liver disease who underwent multiparametric abdominal MRI were included in this retrospective study. Multiparametric MR images were imported into 3D-Slicer software for drawing bounding boxes on MR images. By using a 3D-Slicer extension of SlicerRadiomics, radiomics features were extracted from these MR images. The z-score normalization method was used for post-processing radiomics features. The least absolute shrinkage and selection operator method (LASSO) was performed for selecting significant radiomics features. The logistic regression analysis was used for building the radiomics model. A fusion model was built by integrating serum fibrosis biomarkers of aspartate transaminase-to-platelet ratio index (APRI) and the fibrosis-4 index (FIB-4) with radiomics signatures. RESULTS: In the training cohort, AUCs of radiomics and fusion model were 0.707-0.842 and 0.718-0.854 for differentiating different groups. In the testing cohort, AUCs were 0.514-0.724 and 0.609-0.728. For the training cohort, there was no significant difference of AUCs between radiomics and fusion model (p > 0.05). For the testing cohort, AUCs of fusion model were higher than those of radiomics model in differentiating F1-3 vs. F4 and F1-2 vs. F4 (p = 0.011 & 0.042). CONCLUSIONS: Radiomics model and fusion model based on multiparametric MRI exhibited the feasibility for staging liver fibrosis in patients with CLD, and APRI and FIB-4 could improve the diagnostic performance of radiomics model in differentiating F1-3 vs. F4 and F1-2 vs. F4.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Estudos Retrospectivos , Radiômica , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
4.
Magn Reson Imaging ; 107: 1-7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147969

RESUMO

OBJECTIVES: To validate the performance of nnU-Net in segmentation and CNN in classification for liver fibrosis using T1-weighted images. MATERIALS AND METHODS: In this prospective study, animal models of liver fibrosis were induced by injecting subcutaneously a mixture of Carbon tetrachloride and olive oil. A total of 99 male Wistar rats were successfully induced and underwent MR scanning with no contrast agent to get T1-weighted images. The regions of interest (ROIs) of the whole liver were delineated layer by layer along the liver edge by 3D Slicer. For segmentation task, all T1-weighted images were randomly divided into training and test cohorts in a ratio of 7:3. For classification, images containing the hepatic maximum diameter of every rat were selected and 80% images of no liver fibrosis (NLF), early liver fibrosis (ELF) and progressive liver fibrosis (PLF) stages were randomly selected for training, while the rest were used for testing. Liver segmentation was performed by the nnU-Net model. The convolutional neural network (CNN) was used for classification task of liver fibrosis stages. The Dice similarity coefficient was used to evaluate the segmentation performance of nnU-Net. Confusion matrix, ROC curve and accuracy were used to show the classification performance of CNN. RESULTS: A total of 2628 images were obtained from 99 Wistar rats by MR scanning. For liver segmentation by nnU-Net, the Dice similarity coefficient in the test set was 0.8477. The accuracies of CNN in staging NLF, ELF and PLF were 0.73, 0.89 and 0.84, respectively. The AUCs were 0.76, 0.88 and 0.79, respectively. CONCLUSION: The nnU-Net architecture is of high accuracy for liver segmentation and CNN for assessment of liver fibrosis with T1-weighted images.


Assuntos
Aprendizado Profundo , Masculino , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Ratos Wistar , Estudos Prospectivos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/diagnóstico por imagem
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1730-1739, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37814814

RESUMO

Ulcerative colitis (UC) develops as a result of complex interactions between various cell types in the mucosal microenvironment. In this study, we aim to elucidate the pathogenesis of ulcerative colitis at the single-cell level and unveil its clinical significance. Using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis, we identify a subpopulation of plasma cells (PCs) with significantly increased infiltration in UC colonic mucosa, characterized by pronounced oxidative stress. Combining 10 machine learning approaches, we find that the PC oxidative stress genes accurately distinguish diseased mucosa from normal mucosa (independent external testing AUC=0.991, sensitivity=0.986, specificity=0.909). Using MCPcounter and non-negative matrix factorization, we identify the association between PC oxidative stress genes and immune cell infiltration as well as patient heterogeneity. Spatial transcriptome data is used to verify the infiltration of oxidatively stressed PCs in colitis. Finally, we develop a gene-immune convolutional neural network deep learning model to diagnose UC mucosa in different cohorts (independent external testing AUC=0.984, sensitivity=95.9%, specificity=100%). Our work sheds light on the key pathogenic cell subpopulations in UC and is essential for the development of future clinical disease diagnostic tools.


Assuntos
Colite Ulcerativa , Aprendizado Profundo , Humanos , Colite Ulcerativa/genética , Plasmócitos/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo
6.
Sci Total Environ ; 878: 162826, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36996973

RESUMO

Deep sea debris is any persistent man-made material that ends up in the deep sea. The scale and rapidly increasing amount of sea debris are endangering the health of the ocean. So, many marine communities are struggling for the objective of a clean, healthy, resilient, safe, and sustainably harvested ocean. That includes deep sea debris removal with maneuverable underwater machines. Previous studies have demonstrated that deep learning methods can successfully extract features from seabed images or videos, and are capable of identifying and detecting debris to facilitate debris collection. In this paper, the lightweight neural network (termed DSDebrisNet), which can leverage the detection speed and identification performance to achieve instant detection with high accuracy, is proposed to implement compound-scaled deep sea debris detection. In DSDebrisNet, a hybrid loss function considering the illumination and detection problem was also introduced to improve performance. In addition, the DSDebris dataset is constructed by extracting images and video frames from the JAMSTEC dataset and labeled using a graphical image annotation tool. The experiments are implemented on the deep sea debris dataset, and the results indicate that the proposed methodology can achieve promising detection accuracy in real-time. The in-depth study also provides significant evidence for the successful extension branch of artificial intelligence to the deep sea research domain.

7.
IEEE Trans Image Process ; 31: 3066-3080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35394908

RESUMO

In contemporary society full of stereoscopic images, how to assess visual quality of 3D images has attracted an increasing attention in field of Stereoscopic Image Quality Assessment (SIQA). Compared with 2D-IQA, SIQA is more challenging because some complicated features of Human Visual System (HVS), such as binocular interaction and binocular fusion, must be considered. In this paper, considering both binocular interaction and fusion mechanisms of the HVS, a hierarchical no-reference stereoscopic image quality assessment network (StereoIF-Net) is proposed to simulate the whole quality perception of 3D visual signals in human cortex, including two key modules: BIM and BFM. In particular, Binocular Interaction Modules (BIMs) are constructed to simulate binocular interaction in V2-V5 visual cortex regions, in which a novel cross convolution is designed to explore the interaction details in each region. In the BIMs, different output channel numbers are designed to imitate various receptive fields in V2-V5. Furthermore, a Binocular Fusion Module (BFM) with automatic learned weights is proposed to model binocular fusion of the HVS in higher cortex layers. The verification experiments are conducted on the LIVE 3D, IVC and Waterloo-IVC SIQA databases and three indices including PLCC, SROCC and RMSE are employed to evaluate the assessment consistency between StereoIF-Net and the HVS. The proposed StereoIF-Net achieves almost the best results compared with advanced SIQA methods. Specifically, the metric values on LIVE 3D, IVC and WIVC-I are the best, and are the second-best on the WIVC-II.


Assuntos
Percepção de Profundidade , Imageamento Tridimensional , Bases de Dados Factuais , Humanos , Imageamento Tridimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA