Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(14): 145708, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326947

RESUMO

Si δ-doped AlGaAs/InGaAs/AlGaAs quantum well (QW) structure is commonly adopted as one of the core elements in modern electric and optoelectronic devices. Here, the time dependent photoconductivity spectra along the active InGaAs QW channel in a dual and symmetric Si δ-doped AlGaAs/InGaAs/AlGaAs QW structure are systematically studied under various temperatures (T = 80-300 K) and various incident photon energies (E in = 1.10-1.88 eV) and intensities. In addition to positive photoconductivity, negative photoconductivity (NPC) was observed and attributed to two origins. For T = 180-240 K with E in = 1.51-1.61 eV, the trapping of the photo-excited electrons by the interface states located inside the conduction band of InGaAs QW layer is one of the origins for NPC curves. For T = 80-120 K with E in = 1.10-1.63 eV, the photoexcitation of the excess 'supersaturated' electrons within the active InGaAs QW caused by the short cooling process is another origin.

2.
J Control Release ; 270: 246-259, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29233763

RESUMO

Tumor-targeted drug delivery systems are promising for their advantages in enhanced tumor accumulation and reduced toxicity towards normal organs. However, few nanomedicines have been successfully translated into clinical application. One reason is the gap between current pre-clinical and clinical studies. The prevalent in vitro models utilized in pre-clinical phase are mainly based on the two-dimensional (2D) cell culture and are limited by the difficulty of simulating three-dimensional physiological conditions in human body, such as three-dimensional (3D) architecture, cell heterogeneity, nutrient gradients and the interaction between cells and the extracellular matrix (ECM). In addition, traditional animal models have drawbacks such as high-cost, long periods and physiological differences between animal and human. On the other hand, the employment of 3D tumor cell culture models, especially multicellular tumor spheroids (MCTS), has increased significantly in recent decades. These models have been shown to simulate 3D structures of tumors in vitro with relatively low cost and simple protocols. Currently, MCTS have also been widely exploited in drug delivery system research for comprehensive study of drug efficacy, drug penetration, receptor targeting, and cell recruitment abilities. This review summarizes the delivery barriers for nano-carriers presented in tumor microenvironment, the characteristics and formation methods for applicable multicellular tumor spheroid culture models and recent studies related to their applications in tumor-targeted drug delivery system research.


Assuntos
Sistemas de Liberação de Medicamentos , Esferoides Celulares , Animais , Técnicas de Cultura de Células/métodos , Humanos , Neoplasias , Microambiente Tumoral
3.
Int J Nanomedicine ; 12: 8557-8572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238192

RESUMO

Although widely used in chemotherapy, free doxorubicin (Dox) might enhance cell malignancy undesirably. Liposomal Dox (Doxlipo) has been clinically approved for the treatment of breast cancer due to reduced systematical toxicity and increased tumor targeting, yet the transcriptome-wide elucidation of the Doxlipo formulations remains elusive. To this end, we explored the impact of two Dox liposomal formulations, Doxlipo mainly containing hydrogenated soy phosphatidylcholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, on the transcriptional pattern of MCF-7 cells. The two types of Dox liposomal formulations with different drug release kinetics were investigated to reveal the relationship between the formulation and tumor malignancy. Interestingly, we found that liposomal formulation significantly altered the transcriptional pattern of a wide range of genes. Under equivalent dosage of Dox, free Dox substantially changed the expression of ANK1, ACTA2, GPR87, GDF15, FZD6, and WNT4 in MCF-7 cells. Notably, free Dox induced much higher expression of ABCB1 and significantly enhanced the cell migration behavior in comparison with HSPC Doxlipo under a similar level of cytotoxicity. Finally, siRNA targeting GPR87 was codelivered with cationic Doxlipo to reduce the expression of malignancy-related genes. Our study, for the first time, provides an overview of the influence of formulation on the malignancy at transcriptional level and reveals the relationship between cytotoxicity and cell malignancy from the formulation aspect, offering valuable reference for the future formulation design for anticancer drug delivery.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ácidos Lisofosfatídicos/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA