Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Water Res ; 251: 121131, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246081

RESUMO

Due to the large spatiotemporal variability in the processes controlling carbon emissions from lakes, estimates of global lake carbon emission remain uncertain. Identifying the most reliable predictors of CO2 and CH4 concentrations across different hydrological features can enhance the accuracy of carbon emission estimates locally and globally. Here, we used data from 71 lakes in Southwest China varying in surface area (0.01‒702.4 km2), mean depth (< 1‒89.6 m), and climate to analyze differences in CO2 and CH4 concentrations and their driving mechanisms between the dry and rainy seasons and between different mixing regimes. The results showed that the average concentrations of CO2 and CH4 in the rainy season were 23.9 ± 18.8 µmol L-1 and 2.5 ± 4.9 µmol L-1, respectively, which were significantly higher than in the dry season (10.5 ± 10.3 µmol L-1 and 1.8 ± 4.2 µmol L-1, respectively). The average concentrations of CO2 and CH4 at the vertically mixed sites were 24.1 ± 21.8 µmol L-1 and 2.6 ± 5.4 µmol L-1, being higher than those at the stratified sites (14.8 ± 13.4 µmol L-1 and 1.7 ± 3.5 µmol L-1, respectively). Moreover, the environmental factors were divided into four categories, i.e., system productivity (represented by the contents of total nitrogen, total phosphorus, chlorophyll a and dissolved organic matter), physicochemical factors (water temperature, Secchi disk depth, dissolved oxygen and pH value), lake morphology (lake area, water depth and drainage ratio), and geoclimatic factors (altitude, wind speed, precipitation and land-use intensity). In addition to the regression and variance partitioning analyses between the concentrations of CO2 and CH4 and environmental factors, the cascading effects of environmental factors on CO2 and CH4 concentrations were further elucidated under four distinct hydrological scenarios, indicating the different driving mechanisms between the scenarios. Lake morphology and geoclimatic factors were the main direct drivers of the carbon concentrations during the rainy season, while they indirectly affected the carbon concentrations via influencing physicochemical factors and further system productivity during the dry season; although lake morphology and geoclimatic factors directly contributed to the carbon concentrations at the vertically mixed and stratified sites, the direct effect of system productivity was only observed at the stratified sites. Our results emphasize that, when estimating carbon emissions from lakes at broad spatial scales, it is essential to consider the influence of precipitation-related seasons and lake mixing regimes.


Assuntos
Dióxido de Carbono , Água , Estações do Ano , Água/análise , Clorofila A , Metano/análise , China , Carbono/análise
2.
Sci Total Environ ; 915: 170016, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242483

RESUMO

Stoichiometry determines the key characteristics of organisms and ecosystems on a global scale and provides strong instructions on the fate of sediment carbon, nitrogen, and phosphorus (C-N-P) during the sedimentation process, contributing to the Earth's C-N-P balance. However, the mechanisms underlying C-N-P stoichiometry in response to intensive human activity and organic matter sources remain underexplored, especially in freshwater ecosystems. This study identifies the temporal patterns of C-N-P stoichiometry, reveals the inner driving factors, and clarifies its impact path, especially in eutrophication (the late 1970s). The results revealed that sediment RCP and RNP increased significantly and were controlled by TCAR and TNAR, respectively, indicating the direct impact of burial rate on C-N-P stoichiometry. Based on redundancy analysis and the STM model, autochthonous origin, GDP, and population had positive effects on sediment TCAR, TNAR, and TPAR, which, in turn, affected RCN, RCP, and RNP. Organic matter sources and human activities have a significant influence on RCN, RCP, and RNP, possibly regulated by the variation of TCAR and TNAR. Autochthonous origin had an indirect positive impact on RCN and RCP through the mediating effect of TCAR. Similarly, through the mediating effect of TNAR, it had an indirect negative impact on RCN and an indirect positive impact on RNP. This study showed that TCAR, TNAR, TPAR, GDP, autochthonous, allochthonous and population better explained the changes in RCN, RCP, and RNP over a-hundred-year deposition, highlighting an in-depth understanding of the dynamic change mechanism of sediment C-N-P stoichiometry during the lake deposition process.

3.
Water Res ; 247: 120808, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924684

RESUMO

Dissolved inorganic carbon (DIC) represents a major global carbon pool and the flux from rivers to oceans has been observed to be increasing. The effect of weathering with respect to increasing DIC has been widely studied in recent decades; however, the influence of dissolved organic matter (DOM) on increasing DIC in large rivers remains unclear. This study employed stable carbon isotopes and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) to investigate the effect of the molecular composition of DOM on the DIC in the Yangtze River. The results showed that organic matter is an important source of DIC in the Yangtze River, accounting for 40.0 ± 12.1 % and 32.0 ± 7.2 % of DIC in wet and dry seasons, respectively, and increased along the river by approximately three times. Nitrogen (N)-containing DOM, an important composition in DOM with a percentage of ∼40 %, showed superior oxidation state than non N-containing DOM, suggesting that the presence of N could improve the degradable potential of DOM. Positive relationship between organic sourced DIC (DICOC) and N-containing DOM formulae indicated that N-containing DOM is crucial to facilitate the mineralization of DOM to DICOC. N-containg molecular formular with low H/C and O/C ratio were positively correlated with DICOC further verified these energy-rich and biolabile compounds are preferentially decomposed by bacteria to produce DIC. N-containing components significantly accelerated the degradation of DOM to DICOC, which is important for understanding the CO2 emission and carbon cycling in large rivers.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Isótopos de Carbono , Espectrometria de Massas , China , Nitrogênio , Carbono
4.
Sci Total Environ ; 904: 166785, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666339

RESUMO

It can be challenging to accurately estimate the Chlorophyll-a (Chl-a) concentration in inland eutrophic lakes due to lakes' extremely complex optical properties. The Orbita Hyperspectral (OHS) satellite, with its high spatial resolution (10 m), high spectral resolution (2.5 nm), and high temporal resolution (2.5 d), has great potential for estimating the Chl-a concentration in inland eutrophic waters. However, the estimation capability and radiometric performance of OHS have received limited examination. In this study, we developed a new quasi-analytical algorithm (QAA716) for estimating Chl-a using OHS images. Based on the optical properties in Dianchi Lake, the ability of OHS to remotely estimate Chl-a was evaluated by comparing the signal-to-noise ratio (SNR) and the noise equivalent of Chl-a (NEChl-a). The main findings are as follows: (1) QAA716 achieved significantly better results than those of the other three QAA models, and the Chl-a estimation model, using QAA716, produced robust results with a mean absolute percentage difference (MAPD) of 11.54 %, which was better than existing Chl-a estimation models; (2) The FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction model (MAPD = 22.22 %) was more suitable for OHS image compared to the other three atmospheric correction models we tested; (3) OHS had relatively moderate SNR and NEChl-a, improving its ability to accurately detect Chl-a concentration and resulting in an average SNR of 59.47 and average NEChl-a of 72.86 µg/L; (4) The increased Chl-a concentration in Dianchi Lake was primarily related to the nutrients input, and this had a significant positive correlation with total nitrogen. These findings expand existing knowledge of the capabilities and limitations of OHS in remotely estimating Chl-a, thereby facilitating effective water quality management in eutrophic lake environments.

5.
Sci Total Environ ; 893: 164753, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295523

RESUMO

Understanding the source of polycyclic aromatic hydrocarbons (PAHs) is crucial for determining their structural, degradational, and burial characteristics in lake sediments. Here, we used a sediment core to determine the changing sources and burial characteristics of 16 PAHs from Dianchi Lake, southwest China. The ∑16PAH concentrations ranged from 105.10 to 1248.05 ng g-1 (448.97 ± 351.25 ng g-1), exhibiting a sharp increase since 1976. Our results showed that the depositional flux of PAHs has increased by approximately 3.72 times over the past 114 years (1895-2009). The C/N ratio, stable isotopes (δ13Corg and δ15N), and n-alkanes data all indicated that allochthonous contributors of organic carbon have substantially increased since the 1970s, playing an important role in the increase in sedimentary PAHs. Positive matrix factorization indicated that petrogenic sources, coal and biomass combustion, and traffic emissions were the main sources of PAHs. The relationships between PAHs from different sources and total organic carbon (TOC) varied with the sorption characteristics. The effect of TOC on the absorption of high-molecular-weight aromatic PAHs from fossil fuels was significant. A higher risk of lake eutrophication is accompanied by higher allochthonous organic matter imports, which might stimulate an increase in sedimentary PAHs through algal biomass blooms.

6.
Environ Sci Technol ; 57(23): 8598-8609, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249317

RESUMO

Combustion-driven particulate black carbon (PBC) is a crucial slow-cycling pool in the organic carbon flux from rivers to oceans. Since the refractoriness of PBC stems from the association of non-homologous char and soot, the composition and source of char and soot must be considered when investigating riverine PBC. Samples along the Yangtze River continuum during different hydrological periods were collected in this study to investigate the association and asynchronous combustion drive of char and soot in PBC. The results revealed that PBC in the Yangtze River, with higher refractory nature, accounts for 13.73 ± 6.89% of particulate organic carbon, and soot occupies 37.53 ± 11.00% of PBC. The preponderant contribution of fossil fuel combustion to soot (92.57 ± 3.20%) compared to char (27.55 ± 5.92%), suggested that fossil fuel combustion is a crucial driver for PBC with high soot percentage. Redundancy analysis and structural equation modeling confirmed that the fossil fuel energy used by anthropogenic activities promoting soot is the crucial reason for high-refractory PBC. We estimated that the Yangtze River transported 0.15-0.23 Tg of soot and 0.15-0.25 Tg of char to the ocean annually, and the export of large higher refractory PBC to the ocean can form a long-term sink and prolong the residence time of terrigenous carbon.


Assuntos
Rios , Fuligem , Fuligem/análise , Efeitos Antropogênicos , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Poeira/análise , Carbono , China
7.
Water Res ; 234: 119812, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881953

RESUMO

The Yangtze River, the largest river in Asia, plays a crucial role in linking continental and oceanic ecosystems. However, the impact of natural and anthropogenic disturbances on composition and transformation of dissolved organic matter (DOM) during long-distance transport and seasonal cycle is not fully understood. By using a combination of elemental, isotopic and optical techniques, as well as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we investigated DOM abundance and composition along the whole mainstream at highly spatial resolution in the dry and early wet seasons. Our findings showed that the concentration and flux of dissolved organic carbon (DOC) in the Yangtze River was much lower compared with other worldwide larger rivers. The distribution of δ13CDOC and higher abundance of humic-like fluorescent component and highly unsaturated and phenolics (HUPs) compound reflected a prominent contribution of allochthonous DOM. Further optical and molecular analysis revealed humic-like fluorescent components were coupled with CHO molecules and HUPs compound with higher aromatic, unsaturated, molecular weight and stable characteristics between upstream and midstream reaches. With increasing agricultural and urban land downstream, there were more heteroatomic formulae and labile aliphatic and protein-like compounds which were derived from human activities and in situ primary production. Meanwhile, DOM gradually accumulates with slow water flow and additional autochthonous organics. Weaker solar radiation and water dilution during the dry/cold season favours highly aromatic, unsaturated and oxygenated DOM compositions. Conversely, higher discharge during the wet/warm season diluted the terrestrial DOM, but warm temperatures could promote phytoplankton growth that releases labile aliphatic and protein-like DOM. Besides, chemical sulfurization, hydrogenation and oxygenation were found during molecular cycling processes. Our research emphasizes the active response of riverine DOM to natural and anthropogenic controls, and provides a valuable preliminary background to better understand the biogeochemical cycling of DOM in a larger river.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Humanos , Agricultura , Substâncias Húmicas/análise , Rios/química
8.
Front Microbiol ; 14: 1118892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970704

RESUMO

Microbial communities in freshwater lake sediments exhibit a distinct depth-dependent variability. Further exploration is required to understand their biodiversity pattern and microbial interactions in vertical sediments. In this study, sediment cores from two freshwater lakes, Mugecuo (MGC) and Cuopu (CP), on the Tibetan plateau were sampled and subsequently sliced into layers at a depth of every centimeter or half a centimeter. Amplicon sequencing was used to analyze the composition, diversity, and interaction of microbial communities. Results showed that sediment samples of both lakes could be clustered into two groups at a sediment depth of about 20 cm, with obvious shifts in microbial community compositions. In lake MGC, the richness component dominated ß-diversity and increased with depth, indicating that the microbial communities in the deep layer of MGC was selected from the surface layer. Conversely, the replacement component dominated ß-diversity in CP, implying a high turnover rate in the surface layer and inactive seed banks with a high variety in the deep layer. A co-occurrence network analysis showed that negative microbial interactions were prevalent in the surface layers with high nutrient concentrations, while positive microbial interactions were more common in the deep layers with low nutrient concentrations, suggesting that microbial interactions are influenced by nutrient conditions in the vertical sediments. Additionally, the results highlight the significant contributions of abundant and rare taxa to microbial interactions and vertical fluctuations of ß-diversity, respectively. Overall, this work deepens our understanding of patterns of microbial interactions and vertical fluctuation in ß-diversity in lake sediment columns, particularly in freshwater lake sediments from the Tibetan plateau.

10.
Mar Pollut Bull ; 186: 114424, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470098

RESUMO

Surface sediments and sediment core had been collected from Erhai Lake, Southwest China to study the concentrations, toxicity risks, and sources of polycyclic aromatic hydrocarbons (PAHs). The average concentrations of Σ16PAHs, seven carcinogenic PAHs (carPAHs), and carcinogenic toxic equivalents (TEQcar) in the surface sediments and sediment core were 1634.50 ± 488.56 ng g-1 and 436.72 ± 128.17 ng g-1, 67.18-293.65 ng g-1 and 91.07-265.90 ng g-1, and 34.89 ± 13.17 ng g-1 and 36.99 ± 7.52 ng g-1, respectively. The Σ16PAHs and carPAHs concentrations in surface sediments were higher in the southern lake. The Σ16PAHs and TEQcar in the sediment core peaked in the 2010s and 1980s. The spatiotemporal variations in TEQcar and carPAHs were similar. Positive matrix factorization revealed that traffic emissions contributed 35.71 % of the TEQcar, whereas coal and biomass combustion contributed 12.89 % in the surface sediments. The contribution of gasoline and fossil fuel to TEQcar significantly increased from 19.2 % (1890s) to 66.5 % (1990s), that of benz[a]pyrene (coal combustion) decreased, and those of benz[b]fluoranthene and indeno[1,2,3-cd]pyrene (petroleum combustion and traffic emissions) increased from 1.92 % to 3.93 % and from 1.54 % to 2.52 % in the sediment cores, respectively, owing to changes in energy consumption.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Lagos , Pirenos , Carcinógenos/análise , China , Carvão Mineral/análise , Sedimentos Geológicos , Monitoramento Ambiental
11.
J Environ Manage ; 326(Pt A): 116673, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375425

RESUMO

Owing to their bioavailability and toxicity, the dissolved polycyclic aromatic hydrocarbons (PAHs-d) loaded in rivers are harmful to both inland and marine ecosystems. Thus, exploring the changes in PAHs-d levels and sources is important for controlling PAHs pollution. In this study, the concentration of PAHs-d in the mainstream of the Yangtze River during dry and wet seasons was investigated and the source was analyzed using the positive matrix factorization (PMF) model to assess the response of PAHs-d to hydrological and anthropogenic activities changes. The concentration of PAHs-d in the wet season (166.2 ± 52.51 ng/L) was significantly higher than that in the dry season (89.05 ± 20.89 ng/L) (ANOVA, P < 0.001), and the sampling sites with high pollution were mainly distributed in the downstream urban agglomeration. Herein, 2-3 rings were identified to play a dominant role in the composition of PAHs-d. Compared with the dry season, the proportion of the low molecular weight (LMW) PAHs-d were relatively depleted and the high molecular weight (HMW) PAHs-d were accumulated in the wet season. Coal and coke combustion were identified as the main sources of PAHs-d (65.9% in the dry season and 59.2% in the wet season), followed by vehicle emissions, petroleum sources, and biomass combustion. Owing to the change in energy consumption structure and climate characteristics, the sources of PAHs-d displayed seasonal variation and spatial heterogeneity. Further, flow was identified as the most important factor affecting PAHs-d in the hydrological parameters. Increases of flow, pH, and SPM decreased the proportion of LMW PAHs-d, and increased that of HMW PAHs-d. The increase in anthropogenic activities intensified the residual levels of 2-3rings and 5-6 rings in water, but had no significant impact on the levels of 4 rings.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrologia , Ecossistema , Monitoramento Ambiental , Efeitos Antropogênicos , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
12.
Environ Sci Technol ; 56(24): 18069-18078, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36454627

RESUMO

Combustion-derived black carbon (BC) is an important component of sedimentary carbon pool. Due to different physicochemical properties, determining the source of char and soot is crucial for BC cycling, especially for nonhomologous char and soot in the Tibetan Plateau (TP). This study analyzed the sequestration and source of BC, char, and soot in the Dagze Co (inner TP) sediment core via the content and δ13C, revealing the biomass and fossil fuel driving on nonsynchronous char and soot and their response to local anthropogenic activities and atmospheric transmission. The results showed that BC concentration increased from 1.19 ± 0.35 mg g-1 (pre-1956) to 2.03 ± 1.05 mg g-1 (after 1956). The variation of char was similar to BC, while nonhomologous growth was detected in char and soot (r = 0.29 and p > 0.05). The source apportionment showed that biomass burning for 71.52 ± 10.23% of char and promoted char sequestration. The contribution of fossil fuel combustion to soot (46.67 ± 14.07%) is much higher than char (28.48 ± 10.23%). Redundancy analysis confirmed that local anthropogenic activities significantly influenced BC burial and atmospheric transport from outside TP-regulated BC burial. The contribution of biomass and fossil fuels to nonsynchronous char and soot is conducive to understanding the anthropogenic effect on BC burial in the TP.


Assuntos
Poluentes Atmosféricos , Lagos , Isótopos de Carbono/análise , Tibet , Lagos/análise , Fuligem/análise , Monitoramento Ambiental/métodos , Carbono , Combustíveis Fósseis/análise , Poluentes Atmosféricos/análise
13.
J Environ Manage ; 319: 115689, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816959

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have received worldwide attention due to their potential teratogenic, persistent, and carcinogenic characteristics. In this study, the PAHs concentrations in two dated sediment cores taken from central Tibetan Plateau (TP) were analyzed to study the deposition history, potential sources, ecological risks, and influencing factors. Total concentration of PAHs (∑PAHs) ranged from 50.0 to 195 ng g-1 and 51.9-133 ng g-1 in sediments of Pung Co (PC) and Dagze Co (DZC), respectively. 2-3-ring PAHs were dominant in the two lake sediments, accounting for an average of 77.5% and 80.1%, respectively. The historical trends of ∑PAHs in the two lakes allowed to distinguish three periods, namely, relative stability before the 1950s, a gradual increase between the 1950s and the 1990s, and then a decline to the present-day. In addition, the trend in the concentration level of each PAH composition was consistent with ∑PAHs before the 1990s, while they exhibited different trends since the 1990s, which may be the result of a combination of anthropogenic activities and climate change in recent years, whereas before the 1990s the PAH profile was mainly influenced by atmospheric deposition. The results of source apportionment examined according to diagnostic ratios and positive matrix factorization were consistent and revealed that PAHs were primarily derived from biomass and coal combustion. Significant correlations between PAHs and organic carbon (OC) indicate that OC might be a key factor influencing the concentration of PAHs in sediments. The ecological risk assessment demonstrated that PAHs in TP sediments occurred at a low risk level. Results of this study could be helpful to develop a deeper insight into the deposition history of PAHs in remote lakes of the TP region and explore the response of these variations to climate change and human activities.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Humanos , Lagos , Tibet , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 436: 129209, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739731

RESUMO

Black carbon (BC) is a retarder in carbon cycle, and the proportion of char and soot in BC restricts the significance of BC as a sink in carbon cycle. Tracing the sources of char and soot is helpful for in-depth understanding the anthropogenic-driven burial and pattern of BC, and is crucial for regulating emissions of BC and impact of BC on carbon cycle/climate change. This study investigated source-driven BC via the concentration and δ13C of BC (char and soot) in a Plateau lake sediment. The burial rate of BC (mean: 6.42 ± 5.09 g m-2 yr-1) showed an increasing trend (3.7 times after 1977 compared with before), and the growth rate of char (4.1 times) was faster than soot (2.5 times). The source trace results, showing faster growth of coal combustion ratio in char (increased 21% after 1980 compared with before) than soot (13%), proved that coal combustion promoted faster growth of char in BC. Redundancy analysis confirmed that more low-temperature utilization of coal urged a stronger driving force for char than soot, which caused BC to have lower aromatic content and higher reactivity in organic carbon pool from the past to present, further impact the effects of BC on carbon cycle.


Assuntos
Lagos , Fuligem , Sepultamento , Carbono/análise , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Fuligem/análise
15.
J Environ Sci (China) ; 121: 224-233, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35654512

RESUMO

Receptor models are a useful tool for identifying sources of polycyclic aromatic hydrocarbons (PAHs) in multiple environmental media. In this study, three different receptor models (including the principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF), and Unmix models) were used to apportion the sources of 16 priority PAHs in a sediment core of Lake Dagze Co. The ∑PAHs (sum of all 16 measured PAHs) concentrations ranged from 51.89 to 132.82 ng/g with an average of 80.39 ng/g. The ∑PAHs were dominated by 2-3 ring PAHs, accounting for 80.12% on average, thereby indicating that they mainly originated from biomass and coal combustion and/or from long-range atmospheric transportation. The three models produced consistent source apportionment results. The greatest contributor to ∑PAHs was biomass combustion, followed by coal combustion, vehicle emissions, and petrogenic sources. Moreover, the temporal variation of the common sources was well-correlated among models. The multi-method comparison and evaluation results showed that all three models were useful tools for source apportionment of PAHs, with the PMF model providing better results than the PCA-MLR and Unmix models. The temporal trends of factor contributions were verified by PAHs with different ring numbers. Significant correlations were found between the simulated concentrations of each source factor and the PAHs with different ring numbers (P<0.01), except for the petrogenic source identified by the Unmix model (P>0.05). This study can provide useful information for further investigation of source apportionment of PAHs in the sediment cores.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carvão Mineral , Lagos , Modelos Teóricos , Hidrocarbonetos Policíclicos Aromáticos/análise , Tibet , Poluentes Químicos da Água/análise
16.
J Environ Manage ; 318: 115528, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724575

RESUMO

Black carbon (BC), the highly recalcitrant aromatic carbonaceous from the incomplete combustion of fossil fuel and biomass, is an important carbon sink in carbon cycle. Char and soot, the main components of BC, have significantly different origin and physicochemical characteristics (particle sizes and resultant transportability). The limited understanding of char and soot sources leads to poor insight into the effect of BC on carbon cycle. Sources of char and soot were investigated in this study using stable carbon isotopes to study the effect of BC on the organic carbon pool in a lake, thereby improving the knowledge of lacustrine carbon cycling. The concentration of BC in Taihu Lake ranged from 0.0 to 0.7 mg·L-1and accounted for 10.9 ± 4.7% of the particulate organic carbon. The spatial-mean δ13C values of BC, char, and soot were -23.2 ± 2.0‰, -23.5 ± 2.2‰, and -22.9 ± 1.6‰, respectively. The BC in water was primarily derived from fossil fuels (66.0 ± 9.3%), with liquid fossil fuel accounting for 48.2 ± 13.2% of the BC. The contribution of liquid fossil fuel to soot (49.3%) was much higher than that to char (36.1%); correspondingly, the contributions of biomass and coal to soot (29.2% and 21.5%) were lower than those to char (38.1% and 25.8%). The contribution of liquid fossil fuel combustion to organic carbon (OC), char, and soot gradually increased from 31.9% to 49.3%. Biomass and coal combustion primarily contributed to char (38.1% and 25.8%) and OC (37.5% and 30.6%). The source apportionment of BC, char, and soot revealed the influence of anthropogenically driven BC, char, and soot on the lake and, by extension, to the global carbon cycle.


Assuntos
Poluentes Atmosféricos , Fuligem , Poluentes Atmosféricos/análise , Carbono/análise , Isótopos de Carbono/análise , China , Carvão Mineral , Poeira , Monitoramento Ambiental , Combustíveis Fósseis , Lagos
17.
Sci Total Environ ; 836: 155726, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35525361

RESUMO

The regulation of lacustrine organic carbon (OC) burial by nutrient is an outstanding knowledge gap in the current understanding of lake carbon cycles. In this study, we determined how nutrients quantitatively correspond with OC burial using the parallel factor analysis (PARAFAC) method in Dianchi Lake, southwest China. Factors were classified into three types according to their historical sedimentation characteristics: the background factor (BF), response factor (RF), and contingency factor (CF). The BF represented the original OC input combination in the lake and was insensitive to nutrient changes. The RF represented the OC input combination that was induced or promoted by nutrient changes in the lake. The CF represented short-term discontinuous factors in sedimentary history, which may be related to unique historical events. The results indicate that changes in the total nitrogen (TN) to total phosphorus (TP) ratio correlated with changes in the BF contribution; whereas the quantity of OC was mainly correlated with TN. The >90% of OC buried in sediment was quantitatively simulated by BF and RF; the driving effect of RF on OC burial was approximately 13 times higher than that of BF. It was observed that a 1 mg kg-1 increase in TN led to approximately 2.2 units increase in RF contribution in Dianchi Lake, while the BF was insensitive to changes in TN. Thus, changes in lake nutrients may effectively change the composition and quantity of OC buried in lake sediment.


Assuntos
Carbono , Lagos , Carbono/análise , China , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Nitrogênio/análise , Nutrientes , Fósforo/análise
18.
Environ Pollut ; 301: 118996, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35181452

RESUMO

Sediment dissolved organic matter (DOM) in inland waters is commonly affected by environmental changes. However, knowledge about how sediment DOM responds to eutrophication and the associations between sediment DOM and bacterial communities requires further investigation. We selected a sediment core from Dianchi Lake (China) that was dated from 1864 to 2019 by the activity of radionuclides (210Pb and 137Cs). δ13CDOC changes fit well with the historical record that heavy eutrophic status in Dianchi Lake were observed since 1980s. Large amounts of dissolved organic carbon (DOC), chromophoric (CDOM) and fluorescent (FDOM) DOM accumulated at the top of the sediments during the eutrophication period (1982-present). The additional algae sources with a higher degradation rate altered the composition, aromaticity and humification of DOM. After long-term mineralization, the remaining DOM became more and more recalcitrant and kept a relatively stable level at older sediments. A co-occurrence network analysis revealed that Proteobacteria, Chloroflexi, Acidobacteriota, Bacteroidota and Desulfobacterota were the most abundant species at the phylum level and clustered into three primary modules. Different microbes shared unique preferences for niches, causing a heterogeneous bacterial distribution at different depths. We conducted Spearman's correlation and redundancy analysis (RDA) to explore potential interactions between bacterial community and sediment DOM. The richness and diversity of bacterial communities were positively related to DOM content, suggesting abundant DOM can produce more available resources for bacteria. RDA results showed some specific species might modify DOM composition and structure. This study suggests that sediment DOM properties were regulated by source transformation during eutrophication, and emphasizes the importance of microbial role on sediment biogeochemical process.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Bactérias , China , Eutrofização , Lagos/química
19.
Environ Sci Pollut Res Int ; 29(22): 33427-33442, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35029834

RESUMO

In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi Lake were analyzed. The concentrations of ΣPAH16 in the sediments of Dianchi Lake ranged from 368 to 990 ng/g, with an average value of 572 ng/g, peaking in 1988. Economic development, rapid population growth, and rapid growth of coal consumption have a greater impact on the HMW (high molecular weight) PAHs than on the LMW (low molecular weight) PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA (principal component analysis) model show that the main sources of PAHs were coal and biomass combustion, as well as the fossil fuel combustion in individual years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the past 100 years of sediment pore water, other 2-3 ring LMW PAHs were within a safe range (except for Phe, which reached chronic toxic pollution levels in some years). With an increase in industrialization and urbanization, the burning of fossil fuels such as coal and petroleum has increased, and some of the 4-6 ring HMW PAHs have reached chronic toxicity or even acute toxicity in the sediment pore water.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Sedimentos Geológicos/análise , Lagos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Água/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 803: 150057, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500269

RESUMO

Black carbon (BC), characterized by high aromaticity and stability, has been recognized as a substantial fraction of the carbon pool in soil and sediment. The effect of BC on the particulate organic carbon (POC) pool in lake water, which is an important medium of carbon transmission and transformation, has not been thoroughly studied. The investigations of BC composition and distribution, POC, polycyclic aromatic hydrocarbons (PAHs), and stable carbon and nitrogen isotopes were conducted in a eutrophic urban lake, Taihu Lake, which is the third largest freshwater lake in China. The results indicate that the BC is composed of 55 ± 12% char and 45 ± 12% soot and accounted for 12 ± 6% of POC (the maximum value is 31%). The comparatively high levels of BC and char are distributed in the northern Taihu Lake, especially in Meiliang Bay (0.72 ± 0.38 mg L-1 and 0.45 ± 0.24 mg L-1). The distribution of soot presents a declining trend from the lakeshore to the central lake, particularly in the northern, western, and southern lakes. Source apportionment results from positive matrix factorization of PAHs suggest that consumption of fossil fuel (79 ± 20%) is the dominant source of BC, which agrees with the low ratio of char/soot (1.41 ± 0.71) and relatively depleted δ13C. The covariation of BC and PAHs and terrestrial dissolved organic carbon indicate that the effect of terrestrial input significantly regulates the distribution of BC in Taihu Lake, which is reflected in the high BC value along the lakeshore.


Assuntos
Lagos , Hidrocarbonetos Policíclicos Aromáticos , Carbono/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA