RESUMO
Tremendous popularity is observed for multifunctional flexible electronics with appealing applications in intelligent electronic skins, human-machine interfaces, and healthcare sensing. However, the reported sensing electronics, mostly can hardly provide ultrasensitive sensing sensitivity, wider sensing range, and robust cycling stability simultaneously, and are limited of efficient heat conduction out from the contacted skin interface after wearing flexible electronics on human skin to satisfy thermal comfort of human skin. Inspired from the ultrasensitive tactile perception microstructure (epidermis/spinosum/signal transmission) of human skin, a flexible comfortably wearable ultrasensitive electronics is hereby prepared from thermal conductive boron nitride nanosheets-incorporated polyurethane elastomer matrix with MXene nanosheets-coated surface microdomes as epidermis/spinosum layers assembled with interdigitated electrode as sensing signal transmission layer. It demonstrates appealing sensing performance with ultrasensitive sensitivity (≈288.95 kPa-1), up to 300 kPa sensing range, and up to 20 000 sensing cycles from obvious contact area variation between microdome microstructures and the contact electrode under external compression. Furthermore, the bioinspired electronics present advanced thermal management by timely efficient thermal dissipation out from the contacted skin surface to meet human skin thermal comfort with the incorporated thermal conductive boron nitride nanosheets. Thus, it is vitally promising in wearable artificial electronic skins, intelligent human-interactive sensing, and personal health management.
Assuntos
Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Humanos , Biônica/métodos , Compostos de Boro/química , Pele/química , Condutividade Térmica , Nanoestruturas/químicaRESUMO
For a guided bone regeneration membrane, it is critical to possess osteogenic capability while inhibiting infection caused by bacteria. Inspired by the bilayer structure of the native periosteum, an electrospun Janus membrane with osteogenic and antibacterial dual-function is fabricated for guided bone regeneration. Hydrophilic moxifloxacin (MXF) and hydrophobic icariin (ICA) are loaded in the nanofibers made of a mixture of polycaprolactone and gelatin at the top and bottom layers, respectively, leading to the opposing hydrophilic/hydrophobic properties of the bilayer Janus membranes. The as-obtained Janus membrane exhibits excellent physical properties (tensile strength > 6.0 MPa) and robust biocompatibility, indicating the immense potential as a suitable replacement for the native periosteum. The membrane has a superior surface morphology and outstanding degradation performance in vitro. Besides, the rapid release of MXF and the slow release of ICA can meet the different needs of drug release rates. Only ≈30% ICA is released from the as-obtained Janus membrane after 21 d while almost 80% MXF is released. Mimicking the bilayer structure of the native periosteum, the electrospun Janus membrane containing ICA and MXF exhibits excellent comprehensive properties, which provides a promising strategy for preparing multifunctional scaffolds for tissue engineering.
Assuntos
Antibacterianos , Moxifloxacina , Nanofibras , Osteogênese , Periósteo , Poliésteres , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese/efeitos dos fármacos , Nanofibras/química , Poliésteres/química , Moxifloxacina/farmacologia , Moxifloxacina/química , Membranas Artificiais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Humanos , Regeneração Óssea/efeitos dos fármacos , Gelatina/química , FlavonoidesRESUMO
Flexible electronic sensors are receiving numerous research interests for their potential in electronic skins (e-skins), wearable human-machine interfacing, and smart diagnostic healthcare sensing. However, the preparation of multifunctional flexible electronics with high sensitivity, broad sensing range, fast response, efficient healability, and reliable antibacterial capability is still a substantial challenge. Herein, bioinspired by the highly sensitive human skin microstructure (protective epidermis/spinous sensing structure/nerve conduction network), a skin bionic multifunctional electronics is prepared by face-to-face assembly of a newly prepared healable, recyclable, and antibacterial polyurethane elastomer matrix with conductive MXene nanosheets-coated microdome array after ingenious templating method as protective epidermis layer/sensing layer, and an interdigitated electrode as signal transmission layer. The polyurethane elastomer matrix functionalized with triple dynamic bonds (reversible hydrogen bonds, oxime carbamate bonds, and copper (II) ion coordination bonds) is newly prepared, demonstrating excellent healability with highly healing efficiency, robust recyclability, and reliable antibacterial capability, as well as good biocompatibility. Benefiting from the superior mechanical performance of the polyurethane elastomer matrix and the unique skin bionic microstructure of the sensor, the as-assembled flexible electronics exhibit admirable sensing performances featuring ultrahigh sensitivity (up to 1573.05 kPa-1 ), broad sensing range (up to 325 kPa), good reproducibility, the fast response time (≈4 ms), and low detection limit (≈0.98 Pa) in diagnostic human healthcare monitoring, excellent healability, and reliable antibacterial performance.
Assuntos
Eletrônica , Poliuretanos , Humanos , Reprodutibilidade dos Testes , Antibacterianos , ElastômerosRESUMO
Human intestinal enteroids (HIE) models have contributed significantly to our understanding of diarrheal diseases and other intestinal infections, but their routine culture conditions fail to mimic the mechanical environment of the native intestinal wall. Because the mechanical characteristics of the intestine significantly alter how pathogens interact with the intestinal epithelium, we used different concentrations of polyethylene glycol (PEG) to generate soft (~2 kPa), medium (~10 kPa), and stiff (~100 kPa) hydrogel biomaterial scaffolds. The height of HIEs cultured in monolayers atop these hydrogels was 18 µm whereas HIEs grown on rigid tissue culture surfaces (with stiffness in the GPa range) were 10 µm. Substrate stiffness also influenced the amount of enteroaggregative E. coli (EAEC strain 042) adhered to the HIEs. We quantified a striking difference in adherence pattern; on the medium and soft gels, the bacteria formed clusters of > 100 and even > 1000 on both duodenal and jejunal HIEs (such as would be found in biofilms), but did not on glass slides and stiff hydrogels. All hydrogel cultured HIEs showed significant enrichment for gene and signaling pathways related to epithelial differentiation, cell junctions and adhesions, extracellular matrix, mucins, and cell signaling compared to the HIEs cultured on rigid tissue culture surfaces. Collectively, these results indicate that the HIE monolayers cultured on the hydrogels are primed for a robust engagement with their mechanical environment, and that the soft hydrogels promote the formation of larger EAEC aggregates, likely through an indirect differential effect on mucus. STATEMENT OF SIGNIFICANCE: Enteroids are a form of in vitro experimental mini-guts created from intestinal stem cells. Enteroids are usually cultured in 3D within Matrigel atop rigid glass or plastic substrates, which fail to mimic the native intestinal mechanical environment. Because intestinal mechanics significantly alter how pathogens interact with the intestinal epithelium, we grew human intestinal enteroids in 2D atop polyethylene glycol (PEG) hydrogel scaffolds that were soft, medium, or stiff. Compared with enteroids grown in 2D atop glass or plastic, the enteroids grown on hydrogels were taller and more enriched in mechanobiology-related gene signaling pathways. Additionally, enteroids on the softest hydrogels supported adhesion of large aggregates of enteroaggregative E. coli. Thus, this platform offers a more biomimetic model for studying enteric diseases.
Assuntos
Escherichia coli , Mucosa Intestinal , Humanos , Hidrogéis , Intestinos , Células-TroncoRESUMO
The traditional Chinese medicine icariin (ICA) and broad-spectrum antibacterial drug moxifloxacin hydrochloride (MOX) were introduced into a polycaprolactone core and gelatin shell, respectively, to develop osteogenic and antibacterial biomimetic periosteum by coaxial electrospinning. The physical properties, drug release, degradation, antibacterial property, in vitro and in vivo osteogenesis performances were investigated. Results demonstrated that stepwise and controlled drug release profiles were achieved based on the core-shell configuration and disparate degradation rate of PCL and gelatin. Only 20% ICA was released from this dual drug-loaded membrane after 1 month while the release of MOX was almost completed. Moreover, clear in vitro antibacterial effect and enhancement in osteogenic marker expressions including osteocalcin, type-I collagen expression, and calcium deposition were observed. Notably, the dual drug-loaded membrane displayed fascinating properties contributing to in vivo bone formation in terms of quality and quantity in a rabbit radius defect model.
Assuntos
Antibacterianos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Moxifloxacina/administração & dosagem , Nanofibras/química , Poliésteres/química , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Gelatina/química , Membranas Artificiais , Camundongos , Moxifloxacina/farmacologia , Nanofibras/ultraestrutura , Osteogênese/efeitos dos fármacos , Periósteo/química , Coelhos , Alicerces Teciduais/químicaRESUMO
Maintaining data availability is one of the biggest challenges in decentralized online social networks (DOSNs). The existing work often assumes that the friends of a user can always contribute to the sufficient storage capacity to store all data. However, this assumption is not always true in today's online social networks (OSNs) due to the fact that nowadays the users often use the smart mobile devices to access the OSNs. The limitation of the storage capacity in mobile devices may jeopardize the data availability. Therefore, it is desired to know the relation between the storage capacity contributed by the OSN users and the level of data availability that the OSNs can achieve. This paper addresses this issue. In this paper, the data availability model over storage capacity is established. Further, a novel method is proposed to predict the data availability on the fly. Extensive simulation experiments have been conducted to evaluate the effectiveness of the data availability model and the on-the-fly prediction.