RESUMO
Recent studies suggest a need for reliable biomarkers enhancing prognosis prediction and treatment strategies in cancer. Here, we performed a data analysis bearing on the expression of SCN3B, voltage-gated sodium channel (VGSC) ß3 subunit, as a possible candidate for the development of a glioma biomarker for the first time. This extends our previous review article that mentioned the potential of SCN3B as a prognostic biomarker for glioma survival, further examining its association with existing indicators and immune responses. We utilized clinical and genomic data from multiple glioma cohorts. These include the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We employed analytical techniques including time-dependent receiver operating characteristic (ROC) analysis, decision curves analysis (DCA), and correlation studies with immune checkpoint markers. Our findings indicate a differential SCN3B expression between glioma grades, and that this significantly correlates with patient survival, particularly in oligodendroglioma subtypes. The DCA curves suggested that the inclusion of SCN3B in the prognostic model would improve decision-making in these subtypes. Moreover, SCN3B expression positively correlated with the presence of key immune cells and negatively correlated with several immune checkpoint inhibitors. This suggests potential roles in modulating immune responses in glioma. Thus, SCN3B emerges as a promising potential prognostic biomarker for glioma, especially for oligodendroglioma. Its dual correlations with prognosis and immune regulation present a compelling case for further experimental and clinical investigations to establish its utility in enhancing glioma management strategies. These findings underscore the importance of integrating novel biomarkers with traditional prognostic models to refine treatment paradigms and improve patient outcomes.
Assuntos
Biomarcadores Tumorais , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/imunologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Oligodendroglioma/genética , Oligodendroglioma/metabolismoRESUMO
We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na+ currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na+/Ca2+ exchanger expression, confirming previous cardiomyocyte-level reports. It rescued TAC-induced reductions in echocardiographic ejection fraction and fractional shortening, and diastolic anterior and posterior wall thickening. Dual voltage- and Ca2+-optical mapping of Langendorff-perfused hearts demonstrated that empagliflozin rescued TAC-induced increases in action potential durations at 80% recovery (APD80), Ca2+ transient peak signals and durations at 80% recovery (CaTD80), times to peak Ca2+ (TTP100) and Ca2+ decay constants (Decay30-90) during regular 10-Hz stimulation, and Ca2+ transient alternans with shortening cycle length. Isoproterenol shortened APD80 in sham-operated and TAC-only hearts, shortening CaTD80 and Decay30-90 but sparing TTP100 and Ca2+ transient alternans in all groups. All groups showed similar APD80, and TAC-only hearts showed greater CaTD80, heterogeneities following isoproterenol challenge. Empagliflozin abolished or reduced ventricular tachycardia and premature ventricular contractions and associated re-entrant conduction patterns, in isoproterenol-challenged TAC-operated hearts following successive burst pacing episodes. Empagliflozin thus rescues TAC-induced ventricular hypertrophy and systolic functional, Ca2+ homeostatic, and pro-arrhythmogenic changes in intact hearts.
Assuntos
Compostos Benzidrílicos , Cálcio , Glucosídeos , Homeostase , Animais , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Camundongos , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/cirurgia , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Modelos Animais de DoençasRESUMO
Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.
Assuntos
Neoplasias da Mama , Glicólise , Canal de Sódio Disparado por Voltagem NAV1.5 , Metástase Neoplásica , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Humanos , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Retroalimentação Fisiológica , Sódio/metabolismo , Regulação Neoplásica da Expressão Gênica , Invasividade NeoplásicaRESUMO
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory ß-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
RESUMO
Introduction: The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods: We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results: Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 µM) and CPA (1 µM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion: We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.
RESUMO
Background and Objectives: Gene expression, morphology, and electrophysiological combination are essential for assessing the dynamic development of human induced pluripotent stem cell-derived atrial- and ventricular-like cardiomyocytes (iPS-AM and iPS-VM, respectively). Methods: For iPS-AM/VM differentiation, we performed the small molecule-based temporal modulation of the retinoic acid and bone morphogenetic protein signaling pathways. We investigated the gene expression and morphology using immunofluorescence, quantitative real-time polymerase chain reaction, flow cytometry, and transmission electron microscopy as well as registered electrophysiological functions using a whole-cell patch clamp on days 20, 30, and 60 post-differentiations. Results: Pan-cardiomyocyte marker, including troponin T2 (TNNT2) and alpha-actinin-2 (ACTN2), expressions increased both in iPS-AMs and iPS-VMs. Similarly, the mRNA expression of both iPS-AM-specific markers, ie, natriuretic peptide A (NPPA), myosin light chain 7 (MYL7), and K+ channel Kir3.4 (KCNJ5), and iPS-VM-specific markers, ie, gap junction α-1 (GJA1), myosin light chain 2 (MYL2), and alpha-1-subunit of a voltage-dependent L-type calcium channel (CACNA1C), increased from 0 to 20 days, and then decreased from 30 to 60 days. Concerning morphology, cardiac troponin-T (cTnT) arrangement was progressively organized and developed from a disorderly myofibrillar distribution to an organized sarcomere pattern both in iPS-AMs and iPS-VMs. Mitochondrial numbers gradually increased and those of lipid droplets decreased during dynamic development. Regarding physiological function, the resting and action potential amplitudes remained statistically indifferent in both cell types, and the action potential duration was prolonged during the development. Conclusion: IPS-AMs/VMs displayed dynamic development concerning their gene expression, morphology, and electrophysiological function. The discoveries of this study could provide novel insights into heart development and encourage further research.
RESUMO
Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.
Assuntos
Técnicas de Patch-Clamp , Células Piramidais , Animais , Técnicas de Patch-Clamp/métodos , Camundongos , Células Piramidais/fisiologia , Potenciais da Membrana/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Camundongos Endogâmicos C57BL , MasculinoRESUMO
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
RESUMO
We illustrate use of induced pluripotent stem cells (iPSCs) as platforms for investigating cardiomyocyte phenotypes in a human family pedigree exemplified by novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants occurring alone and in combination. The proband, a four-month-old boy, presented with polymorphic ventricular tachycardia. Genetic tests revealed double novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants inherited from his father (F) and mother (M), respectively. His father showed ventricular premature beats; his mother was asymptomatic. Molecular biological characterizations demonstrated greater TNNT2 messenger RNA (mRNA) expression in the iPSCs-induced cardiomyocytes (iPS-CMs) than in the iPSCs. Cardiac troponin Ts became progressively organized but cytoplasmic RYR2 and SCN10A aggregations occurred in the iPS-CMs. Proband-specific iPS-CMs showed decreased RYR2 and SCN10A mRNA expression. The RYR2-A1855D variant resulted in premature spontaneous sarcoplasmic reticular Ca2+ transients, Ca2+ oscillations and increased action potential durations. SCN10A-Q1362H did not confer any specific phenotype. However, the combined heterozygous RYR2-A1855D and SCN10A-Q1362H variants in the proband iPS-CMs resulted in accentuated Ca2+ homeostasis disorders, action potential prolongation and susceptibility to early afterdepolarizations at high stimulus frequencies. These findings attribute the clinical phenotype in the proband to effects of the heterozygous RYR2 variant exacerbated by heterozygous SCN10A modification. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Assuntos
Células-Tronco Pluripotentes Induzidas , Taquicardia Ventricular , Humanos , Lactente , Masculino , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Homeostase , Mutação , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismoRESUMO
Skeletal and cardiac muscle excitation-contraction coupling commences with Nav1.4/Nav1.5-mediated, surface and transverse (T-) tubular, action potential generation. This initiates feedforward, allosteric or Ca2+-mediated, T-sarcoplasmic reticular (SR) junctional, voltage sensor-Cav1.1/Cav1.2 and ryanodine receptor-RyR1/RyR2 interaction. We review recent structural, physiological and translational studies on possible feedback actions of the resulting SR Ca2+ release on Nav1.4/Nav1.5 function in native muscle. Finite-element modelling predicted potentially regulatory T-SR junctional [Ca2+]TSR domains. Nav1.4/Nav1.5, III-IV linker and C-terminal domain structures included Ca2+ and/or calmodulin-binding sites whose mutations corresponded to specific clinical conditions. Loose-patch-clamped native murine skeletal muscle fibres and cardiomyocytes showed reduced Na+ currents (INa) following SR Ca2+ release induced by the Epac and direct RyR1/RyR2 activators, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate and caffeine, abrogated by the RyR inhibitor dantrolene. Conversely, dantrolene and the Ca2+-ATPase inhibitor cyclopiazonic acid increased INa. Experimental, catecholaminergic polymorphic ventricular tachycardic RyR2-P2328S and metabolically deficient Pgc1ß-/- cardiomyocytes also showed reduced INa accompanying [Ca2+]i abnormalities rescued by dantrolene- and flecainide-mediated RyR block. Finally, hydroxychloroquine challenge implicated action potential (AP) prolongation in slowing AP conduction through modifying Ca2+ transients. The corresponding tissue/organ preparations each showed pro-arrhythmic, slowed AP upstrokes and conduction velocities. We finally extend discussion of possible Ca2+-mediated effects to further, Ca2+, K+ and Cl-, channel types. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Assuntos
Dantroleno , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Dantroleno/farmacologia , Retroalimentação , Músculo Esquelético , Potenciais de Ação , Cálcio/metabolismoRESUMO
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 â¼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 â¼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Assuntos
Fibrilação Atrial , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismoRESUMO
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Assuntos
Arritmias Cardíacas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Transdução de Sinais , Fenômenos Eletrofisiológicos , EletrofisiologiaRESUMO
The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Asparagina , Integrina alfaVbeta3RESUMO
The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.
Assuntos
Peçonhas , Canais de Sódio Disparados por Voltagem , Humanos , Peçonhas/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Analgésicos/uso terapêutico , Dor/tratamento farmacológicoRESUMO
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Assuntos
Sistema Nervoso Autônomo , Neurônios , Sistema Nervoso Autônomo/fisiologiaRESUMO
In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory ß-subunits that modify gating and trafficking behaviour. These ß-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the ß1 and ß3 subunits in regulating NaV 1.5. We catalogue ß1 and ß3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.
Assuntos
Arritmias Cardíacas , Síndrome do QT Longo , Humanos , Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Sódio/metabolismo , Subunidades ProteicasRESUMO
BACKGROUND: To demonstrate treatment efficacy in Crohn's disease (CD), regulatory authorities require that trials include an endoscopic remission/response end point; however, standardized endoscopic assessment of disease activity, such as the Simple Endoscopic Score for Crohn's Disease (SES-CD), is not typically recorded by clinicians in practice or outside of clinical trials. The novel Simplified Endoscopic Mucosal Assessment for Crohn's Disease (SEMA-CD) was developed to be easy to use in routine clinical practice and as a trial end point. We conducted a study to assess and validate the reliability and feasibility of SEMA-CD as a measure of endoscopic disease activity. METHODS: Pre- and post-treatment ileocolonoscopy videos of pediatric (nâ =â 36) and adult (nâ =â 74) CD patients from 2 ustekinumab clinical trials were each scored with SEMA-CD by 2 to 3 professional central readers, blinded to clinical history and other video scorings; the correlation between SEMA-CD and SES-CD previously completed during the trials was assessed. Sensitivity to change, inter- and intrarater reliability, and comparative ease of scoring were also assessed. RESULTS: The SEMA-CD strongly correlated with SES-CD (Spearman ρ = 0.89; 95% confidence interval, 0.86-0.92). Pre- to post-treatment changes in SEMA-CD vs in SES-CD were strongly correlated, and the correlation remained strong between the scores when compared by study population (pediatric, adult), disease severity, and video quality. Intra- and inter-rater reliability were good, and SEMA-CD was rated easier than SES-CD to score 63.0% of the time, although slightly more difficult than SES-CD to score <1.0% of the time. CONCLUSIONS: The SEMA-CD is reliable, reproducible, sensitive to change, and easy to use in both pediatric and adult patients with CD.
Assuntos
Doença de Crohn , Adulto , Humanos , Criança , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/tratamento farmacológico , Endoscopia Gastrointestinal/métodos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , MucosaRESUMO
Introduction: In addition to gap junction conduction, recent reports implicate possible ephaptic coupling contributions to action potential (AP) propagation between successive adjacent cardiomyocytes. Here, AP generation in an active cell, withdraws Na+ from, creating a negative potential within, ephaptic spaces between the participating membranes, activating the initially quiescent neighbouring cardiomyocyte. However, sustainable ephaptic transmission requires subsequent complete recovery of the ephaptic charge difference. We explore physical contributions of passive electrodiffusive ion exchange with the remaining extracellular space to this recovery for the first time. Materials and Methods: Computational, finite element, analysis examined limiting, temporal and spatial, ephaptic [Na+], [Cl-], and the consequent Gaussian charge differences and membrane potential recovery patterns following a ΔVâ¼130 mV AP upstroke at physiological (37°C) temperatures. This incorporated Nernst-Planck formalisms into equations for the time-dependent spatial concentration gradient profiles. Results: Mammalian atrial, ventricular and purkinje cardiomyocyte ephaptic junctions were modelled by closely apposed circularly symmetric membranes, specific capacitance 1 µF cm-2, experimentally reported radii a = 8,000, 12,000 and 40,000 nm respectively and ephaptic axial distance w = 20 nm. This enclosed an ephaptic space containing principal ions initially at normal extracellular [Na+] = 153.1 mM and [Cl-] = 145.8 mM, respective diffusion coefficients D Na = 1.3 × 109 and D Cl = 2 × 109 nm2s-1. Stable, concordant computational solutions were confirmed exploring ≤1,600 nm mesh sizes and Δt≤0.08 ms stepsize intervals. The corresponding membrane voltage profile changes across the initially quiescent membrane were obtainable from computed, graphically represented a and w-dependent ionic concentration differences adapting Gauss's flux theorem. Further simulations explored biological variations in ephaptic dimensions, membrane anatomy, and diffusion restrictions within the ephaptic space. Atrial, ventricular and Purkinje cardiomyocytes gave 40, 180 and 2000 ms 99.9% recovery times, with 720 or 360 ms high limits from doubling ventricular radius or halving diffusion coefficient. Varying a, and D Na and D Cl markedly affected recovery time-courses with logarithmic and double-logarithmic relationships, Varying w exerted minimal effects. Conclusion: We thereby characterise the properties of, and through comparing atrial, ventricular and purkinje recovery times with interspecies in vivo background cardiac cycle duration data, (blue whale â¼2000, humanâ¼90, Etruscan shrew, â¼40 ms) can determine physical limits to, electrodiffusive contributions to ephaptic recovery.
RESUMO
Three-dimensional printing is a rapidly growing field, with extensive application to orthopaedics and spinal surgery. Three-dimensional-printed (3DP) patient-specific implants (PSIs) offer multiple potential benefits over generic alternatives, with their use increasingly being described in the spinal literature. This report details a unique, emergency case of a traumatic spinal injury in a 31-year-old male, acquired rurally and treated with a 3DP PSI in a tertiary unit. With increasing design automation and process improvements, rapid, on-demand virtual surgical planning (VSP) and 3DP PSIs may present the future of orthopaedics and trauma care, enabling faster, safer, and more cost-effective patient-specific procedures.