Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 6(12): e2200162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36026561

RESUMO

Treatments are lacking for sarcopenia, which is an age-related disease characterized by loss of skeletal muscle mass, strength, and/or physical performance. Icariin is a phytomolecule from herbal Epimedium, a traditional Chinese medicine widely used to treat musculoskeletal disorders for thousands of years. Here the effects of icariin against sarcopenia are investigated and the underlying mechanism is elucidated. A classic rat model of bilaterally orchiectomized (ORX) is used to induce sarcopenia. After administration for 8 weeks, compared to the control group, the forelimb grip strength, the specific tetanic forces of the soleus (SOL) and extensor digitorum longus muscle (EDL) are higher, and the fiber cross-sectional areas (CSAs) of the gastrocnemius and tibialis anterior muscle are larger in the icariin group. In addition, icariin promotes mRNA and protein expressions of myosin heavy chain (MyHC) both in SOL and EDL. Mechanistically, icariin significantly suppresses the mRNA and protein expressions of FOXO3a, atrogin-1, and MuRF-1, which are related to the degradation of myosin heavy chain. Collectively, icariin protects from sarcopenia in ORX rats characterized by enhancing grip strength and skeletal muscle contraction, as well as increasing skeletal muscle CSA by inhibiting the ubiquitination degradation of the MyHC in skeletal muscle fibers.


Assuntos
Flavonoides , Cadeias Pesadas de Miosina , Sarcopenia , Animais , Ratos , Contração Muscular/fisiologia , Cadeias Pesadas de Miosina/genética , RNA Mensageiro/metabolismo , Sarcopenia/tratamento farmacológico , Orquiectomia , Masculino , Flavonoides/farmacologia
2.
J Orthop Translat ; 31: 41-51, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804799

RESUMO

OBJECTIVES: Vascularization is an essential step in successful bone tissue engineering. The induction of angiogenesis in bone tissue engineering can be enhanced through the delivery of therapeutic agents that stimulate vessel and bone formation. In this study, we show that cucurbitacin B (CuB), a tetracyclic terpene derived from Cucurbitaceae family plants, facilitates the induction of angiogenesis in vitro. METHODS: We incorporated CuB into a biodegradable poly (lactide-co-glycolide) (PLGA) and ß-tricalcium phosphate (ß-TCP) biomaterial scaffold (PT/CuB) Using 3D low-temperature rapid prototyping (LT-RP) technology. A rat skull defect model was used to verify whether the drug-incorporated scaffold has the effects of angiogenesis and osteogenesis in vivo for the regeneration of bone defect. Cytotoxicity assay was performed to determine the safe dose range of the CuB. Tube formation assay and western blot assay were used to analyze the angiogenesis effect of CuB. RESULTS: PT/CuB scaffold possessed well-designed bio-mimic structure and improved mechanical properties. CuB was linear release from the composite scaffold without affecting pH value. The results demonstrated that the PT/CuB scaffold significantly enhanced neovascularization and bone regeneration in a rat critical size calvarial defect model compared to the scaffold implants without CuB. Furthermore, CuB stimulated angiogenic signaling via up-regulating VEGFR2 and VEGFR-related signaling pathways. CONCLUSION: CuB can serve as promising candidate compound for promoting neovascularization and osteogenesis, especially in tissue engineering for repair of bone defects. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study highlights the potential use of CuB as a therapeutic agent and strongly support its adoption as a component of composite scaffolds for tissue-engineering of bone repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA