Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137567, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529168

RESUMO

Diflubenzuron (DFB) is a benzoylbenzourea insect growth regulator widely used in agriculture, horticulture, and vector control. Therefore, it can easily pollute water bodies and cause harm to aquatic life and ecosystems. To evaluate the impact of DFB on atyid shrimp Neocaridina palmate, the insecticide was applied, at 0, 0.74, 2.222, 6.667, 20, and 60 µg L-1, to indoor systems dominated by submerged plant Ceratophyllum demersum. The highest no observed effect concentration and the lowest observed effect concentration was determined to be 0.167 and 0.536 µg L-1, respectively, as it was counted with either activity or immune-reactive content of chitobiase. Subcellular indices were more sensitive, with a lowest observed effect concentration below 0.107 µg L-1. Principal response curves (PRC) and principal component analysis (PCA) showed that DFB reduced the biomass of C. demersum and the content of chlorophyll-a and phycocyanin in the media. The biomass of periphyton were promoted at the high concentrations. According to the PRC and PCA, DFB reduced the bacterial population related to photoautotrophy, sulphur reduction, and sulphur oxidation and it promoted those related to photoheterotrophy, nitrate reduction, nitrate denitrification, and nitrogen fixation. Besides, DFB reduced fungi related to denitrification. PRC and PCA showed that DFB had a negative impact on pH and dissolved oxygen levels and a positive impact on NH4-N, NO2-N, PO4-P, and conductivity, suggesting the deterioration in quality of water. This study provided useful information for understanding the ecotoxicological effects of DFB at population and community levels.


Assuntos
Decápodes , Diflubenzuron , Animais , Ecossistema , Nitratos , Água Doce/química , Água , Crustáceos
2.
Chemosphere ; 303(Pt 2): 135118, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35643160

RESUMO

Tebufenpyrad are widely used for control leaf mites in orchard and may enter freshwater systems through runoff, spray drift, and so on. Few papers have reported the side effect of the pesticide on population dynamics of aquatic taxa such as shrimps, gastropods, macrophytes, phytoplankton, and bacteria. Here, we tested the effect of a single application of tebufenpyrad on Neocaridina palmata, Physa fontinalis, Ceratophyllum demersum, Simocephalus vetulus, Dolerocypris sinensis, and so on, by indoor systems. The TWA (Time-weighted average)-based highest no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for Neocaridina palmata, which were counted by the wet weight, were 0.67 and 2.33 µg/L, respectively, and the dose-related effect lasted 21 d. According to our study, chitobiase could be used to quantify the effects of the pesticide on shrimp despite the interference from P. fontinalis, which was finally corrected by employing of antibodies. The NOEC and LOEC were thus determined to be 1.41 and ≤ 5.64 µg/L, respectively, which were higher than the values that was counted by the wet weight. Principal component analysis (PCA) and principal response curve (PRC) investigation showed that the pesticide suppressed population of C. demersum, and phytoplankton, while the Physa fontinalis, S. vetulus, and D. sinensis were stimulated by the pesticide. Illumina MiSeq was used to determine the alteration in bacterial community within the systems. The results of PRC and PCA analyses showed that tebufenpyrad induced flora of nitrate reducing, nitrate denitrifying, thiosulfate oxidation, ureolysis, and methanol oxidation, while it suppressed flora of cellulolysis. Tebufenpyrad was found to have a negative effect on water quality indicators such as pH, DO, NO3-, NO2-, and SO42-, and a positive effect on PO43-, NH4+, and EC. This suggested that the tebufenpyrad led to water quality deterioration.


Assuntos
Decápodes , Praguicidas , Animais , Crustáceos , Água Doce , Nitratos , Fitoplâncton , Pirazóis , Caramujos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA