Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189140, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909632

RESUMO

FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.

2.
Sci China Life Sci ; 67(3): 460-474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170390

RESUMO

Cullin-RING E3 ubiquitin ligases (CRLs), the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells, represent core cellular machinery for executing protein degradation and maintaining proteostasis. Here, we asked what roles Cullin proteins play in human mesenchymal stem cell (hMSC) homeostasis and senescence. To this end, we conducted a comparative aging phenotype analysis by individually knocking down Cullin members in three senescence models: replicative senescent hMSCs, Hutchinson-Gilford Progeria Syndrome hMSCs, and Werner syndrome hMSCs. Among all family members, we found that CUL2 deficiency rendered hMSCs the most susceptible to senescence. To investigate CUL2-specific underlying mechanisms, we then applied CRISPR/Cas9-mediated gene editing technology to generate CUL2-deficient human embryonic stem cells (hESCs). When we differentiated these into hMSCs, we found that CUL2 deletion markedly accelerates hMSC senescence. Importantly, we identified that CUL2 targets and promotes ubiquitin proteasome-mediated degradation of TSPYL2 (a known negative regulator of proliferation) through the substrate receptor protein APPBP2, which in turn down-regulates one of the canonical aging marker-P21waf1/cip1, and thereby delays senescence. Our work provides important insights into how CRL2APPBP2-mediated TSPYL2 degradation counteracts hMSC senescence, providing a molecular basis for directing intervention strategies against aging and aging-related diseases.


Assuntos
Proteínas Culina , Células-Tronco Mesenquimais , Humanos , Proteínas de Transporte/metabolismo , Senescência Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
3.
Protein Cell ; 15(1): 36-51, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37158785

RESUMO

Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Hipóxia/metabolismo , Hipóxia Celular/fisiologia
4.
Protein Cell ; 15(5): 364-384, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38126810

RESUMO

The ovary is indispensable for female reproduction, and its age-dependent functional decline is the primary cause of infertility. However, the molecular basis of ovarian aging in higher vertebrates remains poorly understood. Herein, we apply spatiotemporal transcriptomics to benchmark architecture organization as well as cellular and molecular determinants in young primate ovaries and compare these to aged primate ovaries. From a global view, somatic cells within the non-follicle region undergo more pronounced transcriptional fluctuation relative to those in the follicle region, likely constituting a hostile microenvironment that facilitates ovarian aging. Further, we uncovered that inflammation, the senescent-associated secretory phenotype, senescence, and fibrosis are the likely primary contributors to ovarian aging (PCOA). Of note, we identified spatial co-localization between a PCOA-featured spot and an unappreciated MT2 (Metallothionein 2) highly expressing spot (MT2high) characterized by high levels of inflammation, potentially serving as an aging hotspot in the primate ovary. Moreover, with advanced age, a subpopulation of MT2high accumulates, likely disseminating and amplifying the senescent signal outward. Our study establishes the first primate spatiotemporal transcriptomic atlas, advancing our understanding of mechanistic determinants underpinning primate ovarian aging and unraveling potential biomarkers and therapeutic targets for aging and age-associated human ovarian disorders.


Assuntos
Envelhecimento , Ovário , Transcriptoma , Feminino , Animais , Ovário/metabolismo , Envelhecimento/genética
5.
Nat Aging ; 3(10): 1269-1287, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37783815

RESUMO

Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2-STAT3-CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases.


Assuntos
Proteômica , Sirtuína 2 , Humanos , Camundongos , Animais , Idoso , Envelhecimento/genética , Miócitos Cardíacos/metabolismo , Primatas/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Fator de Transcrição STAT3/genética
6.
Cell Death Dis ; 14(7): 481, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516739

RESUMO

Although metabolic reprogramming is characterized as a hallmark of aging, implications of the crucial glutamate dehydrogenase (GDH) in human senescence remain poorly understood. Here, we report that GDH activity is significantly increased in aged mice and senescent human diploid fibroblasts. This enzymatic potentiation is associated with de-repression of GDH from its functionally suppressive ADP-ribosylation modification catalyzed by NAD-dependent ADP-ribosyltransferase/deacetylase SIRT4. A series of transcription analyses led to the identification of FOXQ1, a forkhead family transcription factor (TF), responsible for the maintenance of SIRT4 expression levels in juvenile cells. However, this metabolically balanced FOXQ1-SIRT4-GDH axis, is shifted in senescence with gradually decreasing expressions of FOXQ1 and SIRT4 and elevated GDH activity. Importantly, pharmaceutical inhibition of GDH suppresses the aberrantly activated transcription of IL-6 and IL-8, two major players in senescence-associated secretory phenotype (SASP), and this action is mechanistically associated with erasure of the repressive H3K9me3 (trimethylation of lysine 9 on histone H3) marks at IL-6 and IL-8 promoters, owing to the requirement of α-ketoglutaric acid (α-KG) from GDH-mediated glutamate dehydrogenase reaction as a cofactor for histone demethylation. In supplement with the phenotypic evidence from FOXQ1/SIRT4/GDH manipulations, these data support the integration of metabolism alterations and epigenetic regulation in driving senescence progression and highlight the FOXQ1-SIRT4-GDH axis as a novel druggable target for improving human longevity.


Assuntos
Glutamato Desidrogenase , Sirtuínas , Humanos , Animais , Camundongos , Epigênese Genética , Interleucina-6 , Interleucina-8 , Fatores de Transcrição Forkhead/genética , Fenótipo , Poli(ADP-Ribose) Polimerases , Proteínas Mitocondriais , Sirtuínas/genética
7.
Cell Death Dis ; 14(7): 402, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414755

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death characterized by lipid peroxidation. Colorectal cancer (CRC) cells evade ferroptosis despite their requirement of substantial iron and reactive oxygen species (ROS) to sustain active metabolism and extensive proliferation. However, the underlying mechanism is unclear. Herein, we report the role of lymphoid-specific helicase (LSH), a chromatin-remodeling protein, in suppressing erastin-induced ferroptosis in CRC cells. We demonstrate that erastin treatment leads to dose- and time-dependent downregulation of LSH in CRC cells, and depletion of LSH increases cell sensitivity to ferroptosis. Mechanistically, LSH interacts with and is stabilized by ubiquitin-specific protease 11 (USP11) via deubiquitination; this interaction was disrupted by erastin treatment, resulting in increased ubiquitination and LSH degradation. Moreover, we identified cytochrome P450 family 24 subfamily A member 1 (CYP24A1) as a transcriptional target of LSH. LSH binds to the CYP24A1 promoter, promoting nucleosome eviction and reducing H3K27me3 occupancy, thus leading to transcription of CYP24A1. This cascade inhibits excessive intracellular Ca2+ influx, thereby reducing lipid peroxidation and ultimately conferring resistance to ferroptosis. Importantly, aberrant expression of USP11, LSH, and CYP24A1 is observed in CRC tissues and correlates with poor patient prognosis. Taken together, our study demonstrates the crucial role of the USP11/LSH/CYP24A1 signaling axis in inhibiting ferroptosis in CRC, highlighting its potential as a therapeutic target in CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Epigênese Genética , Ferroptose/genética , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tioléster Hidrolases/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo
8.
Cell Prolif ; 56(5): e13455, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37199024

RESUMO

Sarcopenia, a skeletal muscle disorder in which loss of muscle mass and function progresses with age, is associated with increased overall frailty, risk of falling and mortality in the elders. Here, we reveal that SESN1 safeguards skeletal muscle from ageing downstream of the longevity gene FOXO3, which we recently reported is a geroprotector in primate skeletal muscle. Knockdown of SESN1 mimicked the human myotube ageing phenotypes observed in the FOXO3-deficient human myotubes, whereas genetic activation of SESN1 alleviated human myotube senescence. Of note, SESN1 was identified as a protective secretory factor against muscle atrophy. Administration of recombinant SESN1 protein attenuated senescence of human myotubes in vitro and facilitated muscle regeneration in vivo. Altogether, we unveil a key role of SESN1 downstream of FOXO3 in protecting skeletal muscle from ageing, providing diagnostic biomarkers and intervention strategies for counteracting skeletal muscle ageing and related diseases.


Assuntos
Músculo Esquelético , Sarcopenia , Sestrinas , Idoso , Animais , Humanos , Envelhecimento , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/patologia , Sestrinas/metabolismo , Fatores de Transcrição/metabolismo
9.
Protein Cell ; 14(12): 888-907, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36929025

RESUMO

The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.


Assuntos
Células de Sertoli , Testículo , Animais , Masculino , Células de Sertoli/metabolismo , Transcriptoma , Espermatogênese/genética , Primatas , Envelhecimento/genética , Células-Tronco
10.
Protein Cell ; 14(7): 497-512, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921027

RESUMO

Age-dependent loss of skeletal muscle mass and function is a feature of sarcopenia, and increases the risk of many aging-related metabolic diseases. Here, we report phenotypic and single-nucleus transcriptomic analyses of non-human primate skeletal muscle aging. A higher transcriptional fluctuation was observed in myonuclei relative to other interstitial cell types, indicating a higher susceptibility of skeletal muscle fiber to aging. We found a downregulation of FOXO3 in aged primate skeletal muscle, and identified FOXO3 as a hub transcription factor maintaining skeletal muscle homeostasis. Through the establishment of a complementary experimental pipeline based on a human pluripotent stem cell-derived myotube model, we revealed that silence of FOXO3 accelerates human myotube senescence, whereas genetic activation of endogenous FOXO3 alleviates human myotube aging. Altogether, based on a combination of monkey skeletal muscle and human myotube aging research models, we unraveled the pivotal role of the FOXO3 in safeguarding primate skeletal muscle from aging, providing a comprehensive resource for the development of clinical diagnosis and targeted therapeutic interventions against human skeletal muscle aging and the onset of sarcopenia along with aging-related disorders.


Assuntos
Sarcopenia , Animais , Humanos , Sarcopenia/genética , Sarcopenia/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Primatas/metabolismo
12.
Nat Aging ; 2(4): 303-316, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117743

RESUMO

Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.


Assuntos
Apolipoproteínas E , Heterocromatina , Humanos , Idoso , Heterocromatina/genética , Apolipoproteínas E/genética , Senescência Celular/genética , Envelhecimento/genética , Homólogo 5 da Proteína Cromobox , Proteínas Nucleares/genética
14.
Nucleic Acids Res ; 49(8): 4203-4219, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33706382

RESUMO

Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.


Assuntos
Envelhecimento/metabolismo , Heterocromatina/metabolismo , Sirtuína 3/fisiologia , Envelhecimento/genética , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Heterocromatina/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus , Camundongos SCID , Membrana Nuclear/metabolismo , Domínios Proteicos , Sirtuína 3/química , Sirtuína 3/genética
15.
Cell Death Differ ; 28(5): 1593-1609, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33288900

RESUMO

Despite the emerging evidence on ferroptosis implicated in diverse pathologies, molecular linkage between oxidative inducers and chromatin as epigenetic memory carrier for its propagation remains elusive. Here, we report the identification of two WD40 proteins DCAF8 and WDR76 as substrate adapter and molecular inhibitor respectively of the Cullin-4 RING ubiquitin ligase (CRL4) system for stability control of chromatin remodeler LSH. Degradation analysis and CRL4-DCAF8 complex reconstitution demonstrate that CRL4DCAF8 is a bona fide E3 ligase for LSH. In contrast, WDR76 antagonizes DCAF8-targeted LSH proteolysis through competitive inhibition of the holo-CRL4DCAF8-LSH complex assembly. Importantly, this opposing regulatory strategy is utilized in lipid hydroperoxide induced ferroptosis, where we identify key redox homeostasis genes significantly regulated by the DCAF8/WDR76/LSH axis through transcriptomic epistasis analysis. This regulation is mechanistically attributed to DNA hydroxymethylation fostered WDR76 interaction with LSH and increased ratio of DCAF8 to WDR76 for antagonistic LSH association accompanying decreased DNA oxidation along with ROS overproduction. Evaluation of epigenetic dynamics at ferroptosis gene promoters reveals linker histone H1- and LSH-associated transcriptional repression is coordinately removed upon lipid peroxidation stress. Together with the phenotypes driven by WDR76 and DCAF8 manipulations, these data identify DCAF8- and WDR76-adapted oxidative damage sensing through DNA hydroxymethylation for LSH degradation control as a crucial nexus in epigenetic regulation of ferroptosis.


Assuntos
Cromatina/metabolismo , Epigênese Genética/genética , Ferroptose/genética , Receptores de Interleucina-17/metabolismo , Linhagem Celular Tumoral , Humanos , Transfecção
16.
Biochem Biophys Res Commun ; 529(2): 127-132, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703400

RESUMO

Myeloid leukemia factors (MLF1 and MLF2) are proteins associated with leukemia and several other cancers. However, little is known about the regulatory mechanisms underlying the stability of these proteins. Here, we show that DDB1 and CUL4 associated factor 8 (DCAF8), which can form a functional E3 ligase complex (CRL4DCAF8), has a strong interaction with the MLF2 protein. DCAF8 could promote MLF2 degradation through the ubiquitin-proteasome pathway. In contrast, ubiquitin specific peptidase 11 (USP11) associates with MLF2, thereby increasing its stability. Since MLF1 is highly related to MLF2, we demonstrated that MLF1 also interacts with DCAF8 and USP11, suggesting that CRL4DCAF8 and USP11 may also regulate the expression of MLF1. TCGA analysis revealed that both the myeloid leukemia factors (MLF1 and MLF2) show significant differential expression in various tumors. The results of our study indicate that CRL4DCAF8 and USP11 play opposite roles in the regulation of MLF1 and MLF2, which may, in turn, affect their biological functions in various cancers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Estabilidade Proteica , Proteólise
17.
J Biol Chem ; 293(19): 7268-7280, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29581234

RESUMO

DNA damage-induced NF-κB activation and the secretion of inflammatory cytokines play crucial roles in carcinogenesis and cellular senescence. However, the underlying mechanisms, especially the initial sensors and transducers connecting the nuclear DNA damage signal with cytoplasmic NF-κB activation remain incompletely understood. Here, we report that TRAF-interacting protein with forkhead-associated domain (TIFA), an established NF-κB activator in the cytosol, unexpectedly exhibited nuclear translocation and accumulation on damaged chromatin following genotoxic stress. Accordingly, we also found that DNA damage-induced transcriptional activation and the resulting secretion of classic NF-κB targets, including interleukin (IL)-6 and IL-8, was greatly enhanced in TIFA-overexpressing cells compared with control cells. Mechanistically, DNA damage-induced TIFA phosphorylation at threonine 9 (pThr-9), and this phosphorylation event, involving the pThr-binding forkhead-associated domain, was crucial for its enrichment on damaged chromatin and subsequent NF-κB activation. Moreover, in conjunction with its partner protein, the E3 ligase TNF receptor-associated factor 2 (TRAF2), TIFA relayed the DNA damage signals by stimulating ubiquitination of NF-κB essential modulator (NEMO), whose sumoylation, phosphorylation, and ubiquitination were critical for NF-κB's response to DNA damage. Consistently, TRAF2 knockdown suppressed TIFA overexpression-enhanced NEMO ubiquitination under genotoxic stress, and a unphosphorylatable Thr-9-mutated TIFA variant had only minor effects on NEMO poly-ubiquitination. Finally, in agreement with the model of DNA damage-associated secretory senescence barrier against carcinogenesis, ectopic TIFA expression limited proliferation of multiple myeloma cancer cells. In conclusion our results indicate that TIFA functions as a key transducer in DNA damage-induced NF-κB activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dano ao DNA , NF-kappa B/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Carcinogênese , Proliferação de Células , Cromatina/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mutagênicos/toxicidade , Fosforilação , Ligação Proteica , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitinação
18.
Sci Rep ; 6: 36171, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811966

RESUMO

Nucleolar proteins play an important role in the regulation of the MDM2-p53 pathway, which coordinates cellular response to stress. However, the mechanism underlying this regulation remains poorly understood. Here, we report that the nucleolar protein CSIG is a novel and crucial regulator of the MDM2-p53 pathway. We demonstrate that CSIG translocates from the nucleolus to the nucleoplasm in response to nucleolar stress. Moreover, knockdown of CSIG attenuates the induction of p53 and abrogates G1 phase arrest in response to nucleolar stress. CSIG interacts directly with the MDM2 RING finger domain and inhibits MDM2 E3 ubiquitin ligase activity, thus resulting in a decrease in MDM2-mediated p53 ubiquitination and degradation. Our results suggest that the CSIG-MDM2-p53 regulatory pathway plays an important role in the cellular response to nucleolar stress.


Assuntos
Nucléolo Celular/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Proteínas da Gravidez/antagonistas & inibidores , Proteínas da Gravidez/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Transdução de Sinais , Estresse Fisiológico , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA