Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(7): 5510-5519, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723186

RESUMO

The heat transfer between a nanotip and its substrate is extremely complex but is a key factor in determining the measurement accuracy in tip-assisted nanomanufacturing and thermometry. In this work, the heat transfer from the nanotip to the substrate during sliding is investigated using molecular dynamics simulations. Interfacial interaction and bond formation are analyzed during the sliding process. The results show that the increase of vertical force would greatly improve the interface thermal conductance between the nanotip and the substrate. It is found that more bonds are formed and there are larger contact areas at the interface. In addition, we found that the thermal conductivity of the nanotip is another obstacle for heat transfer between the tip and substrate and it is greatly limited by the nanotip diameter near contact which is close to or even smaller than the phonon mean free path. Meanwhile, the dynamic formation and breakage of the covalent bonds during the sliding could gradually smoothen the tip apex and enhance the thermal transport at the interface. This work provides guidance for the thermal design of a nanotip-substrate system for nanoscale thermal transport measurements.

2.
Adv Sci (Weinh) ; 10(2): e2204777, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394164

RESUMO

Ballistic thermal transport at nanoscale hotspots will greatly reduce the performance of a Gallium nitride (GaN) device when its characteristic length reaches the nanometer scale. In this work, the authors develop a tip-enhanced Raman thermometry approach to study ballistic thermal transport within the range of 10 nm in GaN, simultaneously achieving laser heating and measuring the local temperature. The Raman results show that the temperature increase from an Au-coated tip-focused hotspot up to two times higher (40 K) than that in a bare tip-focused region (20 K). To further investigate the possible mechanisms behind this temperature difference, the authors perform electromagnetic simulations to generate a highly focused heating field, and observe a highly localized optical penetration, within a range of 10 nm. The phonon mean free path (MFP) of the GaN substrate can thus be determined by comparing the numerical simulation results with the experimentally measured temperature increase which is in good agreement with the average MFP weighted by the mode-specific thermal conductivity, as calculated from first-principles simulations. The results demonstrate that the phonon MFP of a material can be rapidly predicted through a combination of experiments and simulations, which can find wide application in the thermal management of GaN-based electronics.

3.
Phys Chem Chem Phys ; 24(42): 25969-25978, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263720

RESUMO

Recently, MXenes (a class of two-dimensional transition metal carbides) have attracted great attention in various applications such as humidity sensors, owing to their unique electrical and thermal properties. However, previous studies of MXenes mostly focus on their humidity-sensing characteristics such as the mechanical response, and only few reports on their electrical and thermal response are available. Herein, we present novel transient electrothermal experiments to demonstrate that a transition from a negative to a positive resistance-temperature relationship can take place when the MXene sample becomes fully dehydrated. This surprising and unusual phenomenon was elucidated through non-equilibrium molecular dynamics simulations and attributed to water absorption/desorption onto the chemically active MXene surface. A linear relationship was also found between electrical/thermal properties and environmental humidity, which could be related to water adsorption on the surface of the MXene sensor. We further decomposed the total measured thermal conductivity and found that phonons were the dominant thermal carriers in the MXene sample. The main breakthrough of this work is the discovery of the unusual resistance-temperature relationship, which should be applicable to the design of MXene-based sensors for various applications.

4.
Phys Chem Chem Phys ; 24(17): 10297-10304, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437535

RESUMO

Plasma-enhanced chemical vapor deposition (PECVD) provides a low-temperature, highly-efficient, and catalyst-free route to fabricate graphene materials by virtue of the unique properties of plasma. In this paper, we conduct reactive molecular dynamics simulations to theoretically study the detailed growth process of graphene by PECVD at the atomic scale. Hydrocarbon radicals with different carbon/hydrogen (C/H) ratios are employed as dissociated precursors in the plasma environment during the growth process. The simulation results show that hydrogen content in the precursors significantly affects the growth behavior and properties of graphene (e.g., the quality of obtained graphene, which is indicated by the number of hexagonal carbon rings formed in the graphene sheets). Moreover, increasing the content of hydrogen in the precursors is shown to reduce the growth rate of carbon clusters, and prevent the formation of curved carbon structures during the growth process. The findings provide a detailed understanding of the fundamental mechanisms regarding the effects of hydrogen on the growth of graphene in a PECVD process.

5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493656

RESUMO

Polymers of intrinsic microporosity (PIMs) have shown promise in pushing the limits of gas separation membranes, recently redefining upper bounds for a variety of gas pair separations. However, many of these membranes still suffer from reductions in permeability over time, removing the primary advantage of this class of polymer. In this work, a series of pentiptycene-based PIMs incorporated into copolymers with PIM-1 are examined to identify fundamental structure-property relationships between the configuration of the pentiptycene backbone and its accompanying linear or branched substituent group. The incorporation of pentiptycene provides a route to instill a more permanent, configuration-based free volume, resistant to physical aging via traditional collapse of conformation-based free volume. PPIM-ip-C and PPIM-np-S, copolymers with C- and S-shape backbones and branched isopropoxy and linear n-propoxy substituent groups, respectively, each exhibited initial separation performance enhancements relative to PIM-1. Additionally, aging-enhanced gas permeabilities were observed, a stark departure from the typical permeability losses pure PIM-1 experiences with aging. Mixed-gas separation data showed enhanced CO2/CH4 selectivity relative to the pure-gas permeation results, with only ∼20% decreases in selectivity when moving from a CO2 partial pressure of ∼2.4 to ∼7.1 atm (atmospheric pressure) when utilizing a mixed-gas CO2/CH4 feed stream. These results highlight the potential of pentiptycene's intrinsic, configurational free volume for simultaneously delivering size-sieving above the 2008 upper bound, along with exceptional resistance to physical aging that often plagues high free volume PIMs.

6.
Phys Rev E ; 103(4-1): 042104, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005868

RESUMO

We show that the Brownian motion of a nanoparticle (NP) can reach a ballistic limit when intensely heated to form supercavitation. As the NP temperature increases, its Brownian motion displays a sharp transition from normal to ballistic diffusion upon the formation of a vapor bubble to encapsulate the NP. Intense heating allows the NP to instantaneously extend the bubble boundary via evaporation, so the NP moves in a low-friction gaseous environment. We find the dynamics of the supercavitating NP is largely determined by the near field effect, i.e., highly localized vapor phase property in the vicinity of the NP.

7.
ACS Nano ; 14(12): 16348-16391, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33253531

RESUMO

The transport of fluid and ions in nano/molecular confinements is the governing physics of a myriad of embodiments in nature and technology including human physiology, plants, energy modules, water collection and treatment systems, chemical processes, materials synthesis, and medicine. At nano/molecular scales, the confinement dimension approaches the molecular size and the transport characteristics deviates significantly from that at macro/micro scales. A thorough understanding of physics of transport at these scales and associated fluid properties is undoubtedly critical for future technologies. This compressive review provides an elaborate picture on the promising future applications of nano/molecular transport, highlights experimental and simulation metrologies to probe and comprehend this transport phenomenon, discusses the physics of fluid transport, tunable flow by orders of magnitude, and gating mechanisms at these scales, and lists the advancement in the fabrication methodologies to turn these transport concepts into reality. Properties such as chain-like liquid transport, confined gas transport, surface charge-driven ion transport, physical/chemical ion gates, and ion diodes will provide avenues to devise technologies with enhanced performance inaccessible through macro/micro systems. This review aims to provide a consolidated body of knowledge to accelerate innovation and breakthrough in the above fields.

8.
Nanoscale ; 12(27): 14626-14635, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32614001

RESUMO

Capillary driven transport of liquids in nanoscopic channels is an omnipresent phenomenon in nature and technology including fluid flow in the human body and plants, drug delivery, nanofluidic devices, and energy/water systems. However, the kinetics of this mass transport mechanism remains in question as the well-known Lucas-Washburn (LW) model predicts significantly faster flow rates compared to the experimental observations. We here showed the role of interfacial viscosity in capillary motion slowdown in nanochannels through a combination of experimental, analytical and molecular dynamics techniques. We showed that the slower liquid flow is due to the formation of a thin liquid layer adjacent to the channel walls with a viscosity substantially greater than the bulk liquid. By incorporating the effect of the interfacial layer, we presented a theoretical model that accurately predicts the capillarity kinetics in nanochannels of different heights. Non-equilibrium molecular dynamics simulation confirmed the obtained interfacial viscosities. The viscosities of isopropanol and ethanol within the interfacial layer were 9.048 mPa s and 4.405 mPa s, respectively (i.e. 279% and 276% greater than their bulk values). We also showed that the interfacial layers are 6.4 nm- and 5.3 nm-thick for isopropanol and ethanol, respectively.

9.
ACS Appl Mater Interfaces ; 12(23): 26680-26687, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32402195

RESUMO

Understanding the growth dynamics of the microbubbles produced by plasmonic heating can benefit a wide range of applications like microfluidics, catalysis, micropatterning, and photothermal energy conversion. Usually, surface plasmonic bubbles are generated on plasmonic structures predeposited on the surface subject to laser heating. In this work, we investigate the growth dynamics of surface microbubbles generated in plasmonic nanoparticle (NP) suspension. We observe much faster bubble growth rates compared to those in pure water with surface plasmonic structures. Our analyses show that the volumetric heating effect around the surface bubble due to the existence of NPs in the suspension is the key to explaining this difference. Such volumetric heating increases the temperature around the surface bubble more efficiently compared to surface heating which enhances the expelling of dissolved gas. We also find that the bubble growth rates can be tuned in a very wide range by changing the concentration of NPs, besides laser power and dissolved gas concentration.

10.
Nat Commun ; 11(1): 2404, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415076

RESUMO

Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 µm s-1) realized by not only optical pushing but also pulling forces from a single Gaussian laser beam. Both the optical pulling and high speeds are made possible by a unique NP-laser interaction. The Au NP excited by the laser at the surface plasmon resonance peak can generate a nanoscale bubble, which can encapsulate the NP (i.e., supercavitation) to create a virtually frictionless environment for it to move, like the Leidenfrost effect. Certain NP-in-bubble configurations can lead to the optical pulling of NP against the photon stream. The demonstrated ultra-fast, light-driven NP movement may benefit a wide range of nano- and bio-applications and provide new insights to the field of optical pulling force.

11.
Environ Res ; 186: 109521, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335429

RESUMO

The high-level ammonium-nitrogen (NH4+-N) is a contaminant for aqueous environment but a potential hydrogen fuel. This study investigated an approach of increasing ammonia recovery via adding sodium sulfate of 0-1.5 M to prevent from nitrogen generation. The results of experiment tests, electrochemical analysis and MD simulation demonstrated that the added Na2SO4 assisted ammonium transport inhibited nitrogen gas generation in a certain concentration range. In electric double layer (EDL), with Na2SO4 concentration increasing, both the migration velocities of NH4+ and Na+ are accelerated for Na2SO4 of 0-0.25 M, whereas they are decelerated for concentrate Na2SO4 that 0.5 M). A thick layer formed by Na+ that imposed a fierce competitive adsorption blocked the migration of NH4+ and the transportation of electrons. The decrease of electrons and the accumulation of water molecules caused the potential drop in the EDL. 0.25 M Na2SO4 was the optimal concentration from the aspect of ion transports. The results obtained in this study can allow the manipulation of EDI capacity optimization.


Assuntos
Amônia , Compostos de Amônio , Amônia/análise , Compostos de Amônio/análise , Eletrodos , Nitrogênio/análise , Sulfatos , Águas Residuárias
12.
ACS Appl Mater Interfaces ; 11(35): 32481-32488, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31408315

RESUMO

Water slip at solid surfaces is important for a wide range of micro-/nanofluidic applications. While it is known that water slip behavior depends on surface functionalization, how it impacts the molecular level dynamics and mass transport at the interface is still not thoroughly understood. In this paper, we use nonequilibrium molecular dynamics simulations to investigate the slip behavior of water confined between gold surfaces functionalized by self-assembled monolayer (SAM) molecules with different polar functional groups. We observe a positive-to-negative slip transition from hydrophobic to hydrophilic SAM functionalizations, which is found to be related to the stronger interfacial interaction between water molecules and more hydrophilic SAM molecules. The stronger interaction increases the surface friction and local viscosity, making water slip more difficult. More hydrophilic functionalization also slows down the interfacial water relaxation and leads to more pronounced water trapping inside the SAM layer, both of which impede water slip. The results from this work will provide useful insights into the understanding of the water slip at functionalized surfaces and design guidelines for various applications.

13.
ACS Nano ; 13(2): 1097-1106, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633498

RESUMO

Polymers with superior mechanical properties are desirable in many applications. In this work, polyethylene (PE) films reinforced with exfoliated thermally reduced graphene oxide (TrGO) fabricated using a roll-to-roll hot-drawing process are shown to have outstanding mechanical properties. The specific ultimate tensile strength and Young's modulus of PE/TrGO films increased monotonically with the drawing ratio and TrGO filler fraction, reaching up to 3.2 ± 0.5 and 109.3 ± 12.7 GPa, respectively, with a drawing ratio of 60× and a very low TrGO weight fraction of 1%. These values represent by far the highest reported to date for a polymer/graphene composite. Experimental characterizations indicate that as the polymer films are drawn, TrGO fillers are exfoliated, which is further confirmed by molecular dynamics (MD) simulations. Exfoliation increases the specific area of the TrGO fillers in contact with the PE matrix molecules. Molecular dynamics simulations show that the PE-TrGO interaction is stronger than the PE-PE intermolecular van der Waals interaction, which enhances load transfer from PE to TrGO and leverages the ultrahigh mechanical properties of TrGO.

14.
ACS Appl Mater Interfaces ; 10(33): 28159-28165, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30056700

RESUMO

Thermal transport across solid-water interfaces is critical for a wide range of applications such as solar thermal evaporation, nanoparticle-assisted hyperthermia therapeutics, and nanofluids. Surface functionalization using self-assembled monolayers (SAMs) to change the hydrophilicity of the solid surface is a common strategy to improve the thermal conductance of solid-water interfaces. Although it is known that hydrophilic interfaces increase the interfacial bonding, how it impacts the molecular level energy transport across the interface is still not clear. In this paper, we perform molecular dynamics simulations to calculate the thermal conductance of differently functionalized gold (Au)-water interfaces. Combining the heat flux decomposition to different interatomic interactions across interfaces and analyses of water structures close to the functionalized surfaces, we found that there is a collaborative effect from the electrostatic interactions and the Lennard-Jones (L-J) interactions (especially the repulsive part). The electrostatic interactions, which are between the polar functional groups of SAMs and water, will attract water molecules closer to the SAM surface, leading both the electrostatic and L-J interactions to have larger effective forces across the interfaces. This increases the power exchanged between solid and water atoms, enhancing the thermal energy transport. The results from this work will provide new insights to the understanding of thermal transport across solid-water interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA