Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biosens Bioelectron ; 260: 116433, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820721

RESUMO

The limitations of solvent residues, unmanageable film growth regions, and substandard performance impede the extensive utilization of metal-organic framework (MOF) films for biosensing devices. Here, we report a strategy for ion design in gas-phase synthesized flexible MOF porous film to attain universal regulation of biosensing performances. The key fabrication process involves atomic layer deposition of induced layer coupled with lithography-assisted patterning and area-selective gas-phase synthesis of MOF film within a chemical vapor deposition system. Sensing platforms are subsequently formed to achieve specific detection of H2O2, dopamine, and glucose molecules by respectively implanting Co, Fe, and Ni ions into the network structure of MOF films. Furthermore, we showcase a practical device constructed from Co ions-implanted ZIF-4 film to accomplish real-time surveillance of H2O2 concentration at mouse wound. This study specifically elucidates the electronic structure and coordination mode of ion design in MOF film, and the obtained knowledge aids in tuning the electrochemical property of MOF film for advantageous sensing devices.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas/métodos , Animais , Camundongos , Dopamina/análise , Dopamina/química , Glucose/análise , Glucose/isolamento & purificação , Glucose/química , Cobalto/química , Níquel/química , Íons/química
2.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594254

RESUMO

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

3.
Adv Sci (Weinh) ; : e2310189, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468446

RESUMO

Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.

4.
ACS Appl Mater Interfaces ; 16(11): 14218-14228, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466323

RESUMO

Lactic acid (LA) is an important downstream product of glycolysis in living cells and is abundant in our body fluids, which are strongly associated with diseases. The development of enzyme-free LA sensors with high sensitivity and low consumption remains a challenge. 2D metal-organic frameworks (MOFs) are considered to be promising electrochemical sensing materials and have attracted much attention in recent years. Compared to monometallic MOFs, the construction of bimetallic MOFs (BMOFs) can obtain a larger specific surface area, thereby increasing the exposed active site. 3D petal-like NixCoy MOF films on nickel foams (NixCoy BMOF@Ni foams) are successfully prepared by combining atomic layer deposition-assisted technology and hydrothermal strategy. The established NixCoy BMOF@Ni foams demonstrate noticeable LA sensing activity, and the study is carried out on behalf of the Ni1Co5 BMOF@Ni foam, which has a sensitivity of up to 9030 µA mM-1 cm-2 with a linear range of 0.01-2.2 mM and the detection limit is as low as 0.16 µM. Additionally, the composite has excellent stability and repeatability for the detection of LA under a natural air environment with high accuracy and reliability. Density functional theory calculation is applied to study the reaction process between composites and LA, and the result suggests that the active site in the NiCo BMOF film favors the adsorption of LA relative to the active site of monometallic MOF film, resulting in improved performance. The developed composite has a great potential for the application of noninvasive LA biosensors.

5.
Chem Commun (Camb) ; 60(23): 3182-3185, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38411614

RESUMO

In this study, Pt(0) microscrolls are synthesized on polished Ni via galvanic replacement reaction (GRR). Employing in situ optical microscopy, the dynamic motion of the catalytic microscrolls as micromotors in H2O2 solutions is revealed. This method offers a rapid fabrication of scrolls from diverse noble metals and alloys.

6.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929967

RESUMO

In an in-depth investigation of membraneless hydrogen peroxide-based fuel cells (H2O2 FCs), hydrogen peroxide (H2O2), a carbon-neutral compound, is demonstrated to undergo electrochemical decomposition to produce H2O, O2, and electrical energy. The unique redox properties of H2O2 position it as a viable candidate for sustainable energy applications. The proposed membraneless design addresses the limitations of conventional fuel cells, including fabrication complexities and design challenges. A novel three-dimensional electrode, synthesized via electroplating techniques, is introduced. Constructed from Au-electroplated carbon fiber cloth combined with Ni-foam, this electrode showcases enhanced electrochemical reaction kinetics, leading to an increased power density for H2O2 FCs. The performance of fuel cells is intricately linked to the pH levels of the electrolyte solution. Beyond FC applications, such electrodes hold potential in portable energy systems and as high surface area catalysts. This study emphasizes the significance of electrode engineering in optimizing the potential of H2O2 as an environmentally friendly energy source.


Assuntos
Eletricidade , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Fibra de Carbono
7.
Nanoscale ; 15(44): 17727-17738, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37881900

RESUMO

The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.


Assuntos
Nanopartículas , Nanotecnologia , Humanos , Movimento (Física) , Catálise
8.
Sci Adv ; 9(42): eadi7805, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851806

RESUMO

Uncooled infrared detection based on vanadium dioxide (VO2) radiometer is highly demanded in temperature monitoring and security protection. The key to its breakthrough is to fabricate bolometer arrays with great absorbance and excellent thermal insulation using a straightforward procedure. Here, we show a tubular bolometer by one-step rolling VO2 nanomembranes with enhanced infrared detection. The tubular geometry enhances the thermal insulation, light absorption, and temperature sensitivity of freestanding VO2 nanomembranes. This tubular VO2 bolometer exhibits a detectivity of ~2 × 108 cm Hz1/2 W-1 in the ultrabroad infrared spectrum, a response time of ~2.0 ms, and a calculated noise-equivalent temperature difference of 64.5 mK. Furthermore, our device presents a workable structural paradigm for polarization-sensitive and omnidirectional light coupling bolometers. The demonstrated overall characteristics suggest that tubular bolometers have the potential to narrow performance and cost gap between photon detectors and thermal detectors with low cost and broad applications.

9.
Adv Mater ; 35(52): e2306715, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721970

RESUMO

Freestanding single-crystalline nanomembranes and their assembly have broad application potential in photodetectors for integrated chips. However, the release and self-assembly process of single-crystalline semiconductor nanomembranes still remains a great challenge in on-chip processing and functional integration, and photodetectors based on nanomembrane always suffer from limited absorption of nanoscale thickness. Here, a non-destructive releasing and rolling process is employed to prepare tubular photodetectors based on freestanding single-crystalline Si nanomembranes. Spontaneous release and self-assembly are achieved by residual strain introduced by lattice mismatch at the epitaxial interface of Si and Ge, and the intrinsic stress and strain distributions in self-rolled-up Si nanomembranes are analyzed experimentally and computationally. The advantages of light trapping and wide-angle optical coupling are realized by tubular geometry. This Si microtube device achieves reliable Ohmic contact and exhibits a photoresponsivity of over 330 mA W-1 , a response time of 370 µs, and a light incident detection angle range of over 120°. Furthermore, the microtubular structure shows a distinct polarization angle-dependent light absorption, with a dichroic ratio of 1.24 achieved at 940 nm. The proposed Si-based microtubes provide new possibilities for the construction of multifunctional chips for integrated circuit ecosystems in the More than Moore era.

10.
ACS Appl Mater Interfaces ; 15(9): 12005-12016, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827513

RESUMO

Ever-evolving advancements in films have fueled many of the developments in the field of electrochemical sensors. For biosensor application platforms, the fabrication of metal-organic framework (MOF) films on microscopically structured substrates is of tremendous importance. However, fabrication of MOF film-based electrodes always exhibits unsatisfactory performance, and the mechanisms of the fabrication and sensing application of the corresponding composites also need to be explored. Here, we report the fabrication of conformal MIL-53 (Fe) films on carbonized natural seaweed with the assistance of an oxide nanomembrane and a potential-dependent electrochemical dopamine (DA) sensor. The geometry and structure of the composite can be conveniently tuned by the experimental parameters, while the sensing performance is significantly influenced by the applied potential. The obtained sensor demonstrates ultrahigh sensitivity, a wide linear range, a low limit of detection, and a good distinction between DA and ascorbic acid at an optimized potential of 0.3 V. The underneath mechanism is investigated in detail with the help of theoretical calculations. This work bridges the natural material and MOF films and is promising for future biosensing applications.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carbono/química , Dopamina/química , Óxidos , Eletrodos , Técnicas Eletroquímicas
11.
J Phys Condens Matter ; 35(9)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36560918

RESUMO

Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.

12.
Nat Commun ; 13(1): 7819, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535951

RESUMO

Thermochromic window develops as a competitive solution for carbon emissions due to comprehensive advantages of its passivity and effective utilization of energy. How to further enhance the solar modulation ([Formula: see text]) of thermochromic windows while ensuring high luminous transmittance ([Formula: see text]) becomes the latest challenge to touch the limit of energy efficiency. Here, we show a smart window combining mechanochromism with thermochromism by self-rolling of vanadium dioxide (VO2) nanomembranes to enhance multi-level solar modulation. The mechanochromism is introduced by the temperature-controlled regulation of curvature of rolled-up smart window, which benefits from effective strain adjustment in VO2 nanomembranes upon the phase transition. Under geometry design and optimization, the rolled-up smart window with high [Formula: see text] and [Formula: see text] is achieved for the modulation of indoor temperature self-adapted to seasons and climate. Furthermore, such rolled-up smart window enables high infrared reflectance after triggered phase transition and acts as a smart lens protective cover for strong radiation. This work supports the feasibility of self-rolling technology in smart windows and lens protection, which promises broad interest and practical applications of self-adapting devices and systems for smart building, intelligent sensors and actuators with the perspective of energy efficiency.

13.
Colloids Surf B Biointerfaces ; 219: 112856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150237

RESUMO

Gas-liquid interfaces are reaching a particular interest in biomedicine. Microbubbles, ultrasound contrast agents of clinical routine, gained increasing attention as theranostic platforms due to the preserved acoustic response, drug conjugation capabilities, and applicability in biological barrier opening. A combination of microbubbles and photodynamic therapy agents can enhance the photodynamic effect, yet the evaluation of agent conjugation on microbubble stabilization and photodynamic effect is needed. Hence, two commercially available phthalocyanine photosensitizers - Holosens® (ZnPc) and Photosens® (AlPc) - were coupled with bovine serum albumin before microbubble synthesis. We demonstrated an albumin: phthalocyanine ratio of 1:1 and covalent attachment for ZnPc, a ratio of 1:3 with electrostatic binding for AlPc. Submicron-sized microbubbles (air- and SF6- filled) had a diameter of 0.8 µm. Albumin-phthalocyanine conjugates increased the microbubble concentration and shelf-life stability compared to plain ones. We hypothesized that phthalocyanine fluorescence lifetime values decreased after conjugation with microbubbles due to narrow distance between conjugates in the shell. Agents based on AlPc demonstrated higher photodynamic activity than agents based on ZnPc, and microbubbles preserved acoustic stability in human blood plasma. The biodistribution of AlPc-conjugated microbubbles was evaluated. We conclude that our microbubble platforms demonstrate greater photodynamic activity and prolonged stability for further applications in photodynamic therapy.

14.
Research (Wash D C) ; 2022: 9842752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928304

RESUMO

Practical implementation of minimally invasive biomedical applications has been a long-sought goal for microrobots. In this field, most previous studies only demonstrate microrobots with locomotion ability or performing a single task, unable to be functionalized effectively. Here, we propose a biocompatible shape memory alloy helical microrobot with regulative structure transformation, making it possible to adjust its motion behavior and mechanical properties precisely. Especially, towards vascular occlusion problem, these microrobots reveal a fundamental solution strategy in the mechanical capability using shape memory effect. Such shape-transformable microrobots can not only manipulate thrust and torque by structure to enhance the unclogging efficiency as a microdriller but also utilize the high work energy to apply the expandable helical tail as a self-propulsive stent. The strategy takes advantage of untethered manipulation to operate microsurgery without unnecessary damage. This study opens a route to functionalize microrobots via accurate tuning in structures, motions, and mechanical properties.

15.
ACS Appl Mater Interfaces ; 13(48): 58104-58113, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34809420

RESUMO

Carbon dioxide (CO2) sensing using an optical technique is of great importance in the environment and industrial emission monitoring. However, limited by the poor specific adsorption of gas molecules as well as insufficient coupling efficiency, there is still a long way to go toward realizing a highly sensitive optical CO2 gas sensor. Herein, by combining the advantages of a whispering-gallery-mode microcavity and a metal-organic framework (MOF) film, a porous functional microcavity (PF-MC) was fabricated with the assistance of the atomic layer deposition technique and was applied to CO2 sensing. In this functional composite, the rolled-up microcavity provides the ability to tune the propagation of light waves and the electromagnetic coupling with the surroundings via an evanescent field, while the nanoporous MOF film contributes to the specific adsorption of CO2. The composite demonstrates a high sensitivity of 188 nm RIU-1 (7.4 pm/% with respect to the CO2 concentration) and a low detection limit of ∼5.85 × 10-5 RIU. Furthermore, the PF-MC exhibits great selectivity to CO2 and outstanding reproducibility, which is promising for the next-generation optical gas sensing devices.

16.
Micromachines (Basel) ; 12(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683212

RESUMO

Microbubbles are intravascular contrast agents clinically used in diagnostic sonography, echocardiography, and radiology imaging applications. However, up to date, the idea of creating microbubbles with multiple functionalities (e.g., multimodal imaging, photodynamic therapy) remained a challenge. One possible solution is the modification of bubble shells by introducing specific compounds responsible for such functions. In the present work, air-core microbubbles with the shell consisting of bovine serum albumin, albumin-coated gold nanocages, and zinc phthalocyanine were prepared using the sonication method. Various physicochemical parameters such as stability over time, size, and concentration were investigated to prove the potential use of these microbubbles as contrast agents. This work shows that hybrid microbubbles have all the necessary properties for multimodal imaging (ultrasound, raster-scanning microscopy, and fluorescence tomography), which demonstrate superior characteristics for potential theranostic and related biomedical applications.

17.
Micromachines (Basel) ; 12(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683302

RESUMO

Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.

18.
Adv Mater ; 33(22): e2007465, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893682

RESUMO

Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.


Assuntos
Microfluídica , Nanoestruturas , Microbolhas
19.
Micromachines (Basel) ; 11(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610688

RESUMO

A controllable generation of oxygen gas during the decomposition of hydrogen peroxide by the microreactors made of tubular catalytic nanomembranes has recently attracted considerable attention. Catalytic microtubes play simultaneous roles of the oxygen bubble producing microreactors and oxygen bubble-driven micropumps. An autonomous pumping of peroxide fuel takes place through the microtubes by the recoiling microbubbles. Due to optimal reaction-diffusion processes, gas supersaturation, leading to favorable bubble nucleation conditions, strain-engineered catalytic microtubes with longer length produce oxygen microbubbles at concentrations of hydrogen peroxide in approximately ×1000 lower in comparison to shorter tubes. Dynamic regimes of tubular nanomembrane-based oxygen microbubble generators reveal that this depends on microtubes' aspect ratio, hydrogen peroxide fuel concentration and fuel compositions. Different dynamic regimes exist, which produce specific bubble frequencies, bubble size and various amounts of oxygen. In this study, the rolled-up Ti/Cr/Pd microtubes integrated on silicon substrate are used to study oxygen evolution in different concentrations of hydrogen peroxide and surfactants. Addition of Sodium dodecyl sulfate (SDS) surfactants leads to a decrease of bubble diameter and an increase of frequencies of bubble recoil. Moreover, an increase of temperature (from 10 to 35 °C) leads to higher frequencies of oxygen bubbles and larger total volumes of produced oxygen.

20.
Sci Adv ; 6(18): eaaz6511, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494679

RESUMO

The sensing module that converts physical or chemical stimuli into electrical signals is the core of future smart electronics in the post-Moore era. Challenges lie in the realization and integration of different detecting functions on a single chip. We propose a new design of on-chip construction for low-power consumption sensor, which is based on the optoelectronic detection mechanism with external stimuli and compatible with CMOS technology. A combination of flipped silicon nanomembrane phototransistors and stimuli-responsive materials presents low-power consumption (CMOS level) and demonstrates great functional expansibility of sensing targets, e.g., hydrogen concentration and relative humidity. With a device-first, wafer-compatible process introduced for large-scale silicon flexible electronics, our work shows great potential in the development of flexible and integrated smart sensing systems for the realization of Internet of Things applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA