Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 12970-12980, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38725336

RESUMO

Ionogels have grabbed significant interest in various applications, from sensors and actuators to wearable electronics and energy storage devices. However, current ionogels suffer from low strength and poor ionic conductivity, limiting their performance in practical applications. Here, inspired by the mechanical reinforcement of natural biomacromolecules through noncovalent aggregates, a strategy is proposed to construct nanofibril-based ionogels through complex coacervation-induced assembly. Cellulose nanofibrils (CNFs) can bundle together with poly(ionic liquid) (PIL) to form a superstrong nanofibrous network, in which the ionic liquid (IL) can be retained to form ionogels with high liquid inclusion and ionic conductivity. The strength of the CNF-PIL-IL ionogels can be tuned by the IL content over a wide range of up to 78 MPa. The optical transparency, high strength, and hygroscopicity enabled them to be promising candidates in moist-electricity generation and applications such as energy harvesting windows and wearable power generators. In addition, the ionogels are degradable and the ionogel-based generators can be recycled through dehydration. Our strategy suggests perspectives for the fabrication of high-strength and multifunctional ionogels for sustainable applications.

2.
Build Simul ; 16(2): 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36277844

RESUMO

The temperature distribution is always assumed to be homogeneous in a traditional single-input-single-output (SISO) air conditioning control strategy. However, the airflow inside is more complicated and unpredictable. This study proposes a zonal temperature control strategy with a thermal coupling effect integrated for air-conditioned large-scale open spaces. The target space was split into several subzones based on the minimum controllable air terminal units in the proposed method, and each zone can be controlled to its own set-point while considering the thermal coupling effect from its adjacent zones. A numerical method resorting to computational fluid dynamics was presented to obtain the heat transfer coefficients (HTCs) under different air supply scenarios. The relationship between heat transfer coefficient and zonal temperature difference was linearized. Thus, currently available zonal models in popular software can be used to simulate the dynamic response of temperatures in large-scale indoor open spaces. Case studies showed that the introduction of HTCs across the adjacent zones was capable of enhancing the precision of temperature control of large-scale open spaces. It could satisfy the temperature requirements of different zones, improve thermal comfort and at least 11% of energy saving can be achieved by comparing with the conventional control strategy. Electronic Supplementary Material ESM: The Appendix is available in the online version of this article at 10.1007/s12273-022-0942-8.

3.
Build Environ ; 127: 204-210, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32287975

RESUMO

In this paper, we develop a mathematical model that aims (1) to predict the distribution of negative ions generated by an air ionizer installed in a ventilation duct and (2) to predict the efficiency with which it inactivates bacteria. The transportation equation for the negative ions was resolved combined with the bulk air velocity and the electric field. The bacteria distribution was solved numerically by integrating the susceptibility constant, which was acquired from the experiments. Two types of bacteria (Serratia marcescens, Staphylococcus epidermidis) were aerosolized and released into a 9-m ventilation duct system. Inactivation efficiencies were calculated for inlet velocities from 2 to 6.5 m/s and for various ion intensities. The efficiencies for S. marcescens and S. epidermidis were 31.53% (SD, 11.4%) and 12.17% (SD, 0.43%), respectively, with susceptibility constants of 8.67 × 10-11 Colony-Forming Units (CFU)/ions and 2.72 × 10-11 CFU/ions, respectively. The modeling results matched those of the experiments well. The pressure penalty at the maximum velocity (6.5 m/s) was only 9 Pa. The results show that the use of negative ions has great potential to enhance indoor air quality by reducing airborne microorganisms in ventilation systems.

4.
ISA Trans ; 53(1): 141-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24079460

RESUMO

This paper shows how to apply generalized eigenvalue minimization to processes that can be described by a first-order plus time-delay model with uncertain gain, time constant and delay. An algorithm to transform the uncertain first-order plus time delay model into a state-space model with uncertainty polyhedron is firstly described. The accuracy of the transformation is studied using numerical examples. Then, the uncertainty polyhedron is rewritten as a linear-matrix-inequality constraint and generalized eigenvalue minimization is adopted to calculate a feedback control law. Case studies show that even if uncertainties associated with the first-order plus time delay model are significant, a stable feedback control law can be found. The proposed control is tested by comparing with a robust internal model control. It is also tested by applying it to the temperature control of air-handing units.

5.
ISA Trans ; 48(4): 503-11, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19552902

RESUMO

This paper studies the application of robust model predictive control (MPC) in a constraint process suffering from time-delay uncertainty. The process is described using a transfer function and sampled into a discrete model for computer control design. A polytope is firstly developed to describe the uncertain discrete model due to the process's time-delay uncertainty. Based on the proposed description, a linear matrix inequality (LMI) based MPC algorithm is employed and modified to design a robust controller for such a constraint process. In case studies, the effect of time-delay uncertainty on the control performance of a standard MPC algorithm is investigated, and the proposed description and the modified control algorithm are validated in the temperature control of a typical air-handling unit.


Assuntos
Algoritmos , Previsões/métodos , Indústrias/instrumentação , Modelos Estatísticos , Incerteza , Modelos Lineares , Dinâmica não Linear , Reprodutibilidade dos Testes , Processos Estocásticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA