Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(25): 17809-17816, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884121

RESUMO

Thermally activated delayed fluorescence (TADF) has been widely applied to electroluminescent materials to take the best advantage of triplet excitons. For some materials, the TADF originates from high-level reverse intersystem crossing (hRISC), and has attracted much attention due to its high efficiency for utilizing the triplet excitons. However, reports concerning the mechanistic studies on the hRISC-TADF process and structure-property correlation are sparse. In this study, we prepared three compounds containing triphenylamine and benzophenone with different substitution positions, o-TPA-BP, m-TPA-BP, and p-TPA-BP, in which only p-TPA-BP displays strong luminescence and hRISC-TADF features. To investigate the mechanism of the substituent-position-dependent hRISC-TADF, ultrafast time-resolved spectroscopy was utilized to observe the deactivation pathways with the assistance of theoretical calculations. The results show that o-TPA-BP will not generate triplet species, and the triplet species for m-TPA-BP will rapidly deactivate. Only p-TPA-BP can transition back to the singlet state from the T2 state effectively and exhibit a large gap between T1 and T2 to favor the hRISC route. These results illustrate how the substitution position affects the ISC and further influences the luminescence properties, which can provide new insights for developing new high-efficiency luminescent materials.

2.
Nat Commun ; 15(1): 2561, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519517

RESUMO

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.


Assuntos
Anti-Infecciosos , Cárie Dentária , Ácidos Nucleicos , Humanos , Cristalização , Anti-Infecciosos/farmacologia
3.
J Phys Chem B ; 126(45): 9388-9398, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36331406

RESUMO

The photophysical and photochemical reaction pathways of ortho-methylbenzophenone (o-MeBP) in different solutions were investigated by employing femtosecond to nanosecond transient absorption and nanosecond time-resolved resonance Raman spectroscopy methods. In pure acetonitrile, neutral or pH 1 aqueous solutions, o-MeBP exhibit similar excited-state evolutions upon excitation in which o-MeBP will experience excitation to an excited state then undergo intersystem crossing and solvent arrangement followed by 1,5 hydrogen atom transfer processes to form the first singlet excited state, triplet state (n, π*), biradical intermediates, and enol form transients, respectively. However, in a pH 0 acidic solution, the protonation of o-MeBP will form the cation biradical intermediate that facilitates radical coupling to generate a benzocyclobutanol product, which causes a dramatic reduction of the lifetime of the enol form transients. In contrast, in sodium bicarbonate solution, the biradical intermediate may be quenched by the bicarbonate ion to construct a C-C bond and form the carboxylic acid that causes a fast decay of biradical intermediate. These results demonstrate that the photophysical and photochemical reaction pathways of o-MeBP are pH-dependent in aqueous solution which may be very useful for the capture of CO2 capture by photoexcitation of aromatic ketones.


Assuntos
Análise Espectral Raman , Água , Água/química , Solventes
4.
J Phys Chem Lett ; 12(24): 5796-5801, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34137613

RESUMO

Near-infrared (NIR) photothermal conversion is of great interest in many fields. Here, a self-assembly organic cocrystal (N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and pyromellitic dianhydride (PMDA)) with strong absorption in NIR range is constructed, with widespread absorption (200-1500 nm) and very high NIR photothermal conversion efficiency (87.2%). Essentially, in this cocrystal, a small HOMO-LUMO gap of donor-acceptor pair boosts the absorption ability of this cocrystal in the NIR range. The mixed stacking structure significantly enhances the intermolecular interactions as well as the electron-hole delocalization, suppressing the emission processes, leading to nonradiative decay processes from excited states. Strong intermolecular interactions enable the cocrystal to have dense electronic energy levels, leading to a high proportion (94.4%) vibrational cooling and internal conversion processes with ultrafast excited-state relaxation (0.12 ps), which contributes to high NIR photothermal conversion efficiency. Furthermore, the cocrystal has exhibited capable ability for being an excellent candidate for a NIR photothermal therapy agent.

5.
J Phys Chem Lett ; 12(17): 4306-4312, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913708

RESUMO

Noncovalent interaction between small molecules can generate a charge-transfer (CT) state, achieving the effect of a conjugated large molecule as well as a transition-metal complex. Herein, we demonstrate a room-temperature stable dianion biradical conveniently produced by noncovalent intermolecular CT interaction between anthraquinone (AQ) and potassium tert-butoxide (KOtBu). Essentially, CT from KOtBu to AQ boosts absorption bands from the UV to visible and near-infrared (NIR) range, enabling AQ-KOtBu to have new absorption bands around 400, 550, and 900 nm. The absorption bands of AQ-KOtBu are dramatically enhanced after blue-to-green or NIR light excitation. Interestingly, both ground state AQ-KOtBu (C(1)) and photoexcited AQ-KOtBu (C(2)) are quenched by oxygen to produce singlet oxygen. Furthermore, C(1) can be photoactivated by purged nitrogen in solution, and C(2) can be regenerated after the photoexcitation and purged nitrogen in solution, which may serve as a photosensitizer under visible and NIR light excitation.

6.
J Phys Chem Lett ; 12(1): 41-48, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33296591

RESUMO

The C═C photoswitching molecules [1,2-di(4-pyridyl)ethylene (DPE), 4-styrylpyridine (SP), and trans-1,2-stilbene (TS)] show favorable photoisomerization characteristics. Although the solid states of photoswitching molecules are usually used in optical devices, their excited state's evolution has been little explored. Here, the excited state's relaxation of DPE, SP, and TS in nanocrystal/microcrystal suspensions as well as in solution phase was studied to uncover the early events of their excited states. The dynamics of nanocrystal/microcrystal suspensions was tremendously accelerated in comparison to the kinetics obtained in the solution for these molecules under excitation. DPE exhibits the slowest decay rate, while SP shows the fastest decay rate in nanocrystal suspensions or solution, suggesting SP may be the best candidate for the photoswitching device. The intermolecular interactions and space restriction of the crystal lead to the acceleration of the excited state's evolution for DPE, SP, and TS. This provides new insight into the design of optical materials.

7.
J Phys Chem Lett ; 10(21): 6499-6503, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589456

RESUMO

Two widely used ultraviolet filters, oxybenzone and dioxybenzone, are applied in a variety of areas, particularly in sunscreen cosmetics. Ultrafast femtosecond transient absorption is utilized to trace the excited states and transient states of the nanocrystalline suspension and solution phase of these two molecules. The analysis reveals the intriguing discovery that the transient species of the oxybenzone nanocrystalline suspension have shorter lifetimes than that in solution. The energy dissipation mechanism of these molecules is simulated by density functional theory calculations, and the potential energy surface calculations and the single-crystal structure can well explain the fast decay dynamics of the nanocrystalline transient states of these two molecules.

8.
Chem Res Toxicol ; 32(4): 613-620, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30724062

RESUMO

Naproxen is a nonsteroidal anti-inflammatory drug that exhibits phototoxic side effects in humans, but its mechanism of phototoxicity is ambiguous. To uncover photophysical and photochemical reaction processes of naproxen, femtosecond to nanosecond transient absorption spectroscopies were employed to directly detect excited and transient states of naproxen upon UV irradiation in pure acetonitrile, acetonitrile:water 1:1, and acetonitrile:PBS 1:1 solutions. The transient absorption data together with time-dependent density functional theory analysis-predicted absorption spectra of selected intermediates were integrated to elucidate photochemical mechanisms for reactions of naproxen in different solutions. Femtosecond transient absorption results demonstrated that naproxen has two different photochemical pathways at the early delay time before the formation of final products in various solutions. In a pure acetonitrile solvent, naproxen undergoes charge transfer to solvent to generate a radical cation intermediate, which decarboxylates to generate a radical 2B intermediate. While in an acetonitrile:PBS 1:1 solution, naproxen predominantly deprotonates first and is promoted to the singlet exited state (1NPX-), which undergoes intersystem crossing to give rise to the lowest-lying triplet states (T1). T1 then undergoes decarboxylation reaction and produces a radical 2B species. Kinetic characterization of these processes reveals that the decarboxylation reaction in an acetonitrile:PBS 1:1 solution is faster than that in a pure acetonitrile solvent. Deep studies on photophysical and photochemical processes of NPX will aid us to better understand the toxicology mechanisms associated with NPX in different conditions.


Assuntos
Anti-Inflamatórios não Esteroides/química , Lasers , Naproxeno/química , Fotólise , Estrutura Molecular , Processos Fotoquímicos , Fatores de Tempo , Raios Ultravioleta
9.
J Am Chem Soc ; 140(46): 15957-15968, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30269478

RESUMO

Development of versatile, chemically tunable photocages for photoactivated chemotherapy (PACT) represents an excellent opportunity to address the technical drawbacks of conventional photodynamic therapy (PDT) whose oxygen-dependent nature renders it inadequate in certain therapy contexts such as hypoxic tumors. As an alternative to PDT, oxygen free mechanisms to generate cytotoxic reactive oxygen species (ROS) by visible light cleavable photocages are in demand. Here, we report the detailed mechanisms by which the small molecule blebbistatin acts as a one-photon blue light-gated or two-photon near-infrared light-gated photocage to directly release a hydroxyl radical (•OH) in the absence of oxygen. By using femtosecond transient absorption spectroscopy and chemoselective ROS fluorescent probes, we analyze the dynamics and fate of blebbistatin during photolysis under blue light. Water-dependent photochemistry reveals a critical process of water-assisted protonation and excited state intramolecular proton transfer (ESIPT) that drives the formation of short-lived intermediates, which surprisingly culminates in the release of •OH but not superoxide or singlet oxygen from blebbistatin. CASPT2//CASSCF calculations confirm that hydrogen bonding between water and blebbistatin underpins this process. We further determine that blue light enables blebbistatin to induce mitochondria-dependent apoptosis, an attribute conducive to PACT development. Our work demonstrates blebbistatin as a controllable photocage for •OH generation and provides insight into the potential development of novel PACT agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA