RESUMO
A direct and novel transformation of propargylic alcohols with sodium sulfinates for the regio- and stereoselective synthesis of (E)-1,3-disulfonylpropenes and (E)-1-sulfonylpropenols was successfully developed in the presence of TMSCl under mild conditions. The preliminary mechanistic experiments demonstrated that the reaction underwent an unprecedented dual nucleophilic substitution/radical addition process, in which sodium sulfinates were used not only as nucleophiles but also as a sulfonyl radical source.
RESUMO
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics.
RESUMO
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
RESUMO
BACKGROUND: Osteoarthritis has become the predominant manifestation of arthritic conditions on a worldwide scale and serves as a significant instigator of pain, impairment, and increasing socio-economic strain on a global level. The ongoing discourse on the choice between total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) for patients suffering from anterior medial osteoarthritis continues to ignite scholarly controversy. Our objective was to assess and compare the clinical outcomes of UKA and TKA within the same patient, hereby offering a novel perspective on this topic. MATERIALS AND METHODS: Fifty-seven individuals who underwent TKA on one knee and UKA on the other knee at the Department of Orthopaedics, First Hospital of Hebei Medical University between March 2019 and March 2024 were analysed for this retrospective study. We conducted a comprehensive examination and evaluation of perioperative laboratory assessments, radiological examinations, knee functionality, contentment levels, and postoperative complications within the two groups. RESULTS: Following surgical procedures, levels of hemoglobin, red blood cells, and albumin were found to be elevated in the UKA group when compared to the TKA group (hemoglobin: 121.2 ± 12.54 vs. 110.1 ± 13.21 g/L; red blood cells: 4.0 ± 0.47 vs. 3.6 ± 0.42 *1012/L; albumin: 37.7 ± 5.66 vs. 35.3 ± 5.23 g/L). There is a significant difference in the hip-knee-ankle angles between the postoperative UKA group and the TKA group (5.3 ± 3.46° vs. 4.1 ± 2.86°, p < 0.05). There existed no notable disparity in postoperative visual analog scale, knee society score, and forgotten joint score between the two groups. However, a remarkable variance was observed in postoperative range of motion between the two groups (116.4 ± 5.96° vs. 108.4 ± 5.32°). CONCLUSION: We found that UKA resulted in less physical strain, less postoperative inflammatory response, improved joint mobility, although with less effective lower limb force line correction compared to TKA. Many patients have shown a preference for UKA and express higher levels of satisfaction with the procedure.
RESUMO
To quantitatively evaluate chronic kidney disease (CKD), a deep convolutional neural network-based segmentation model was applied to renal enhanced computed tomography (CT) images. A retrospective analysis was conducted on a cohort of 100 individuals diagnosed with CKD and 90 individuals with healthy kidneys, who underwent contrast-enhanced CT scans of the kidneys or abdomen. Demographic and clinical data were collected from all participants. The study consisted of two distinct stages: firstly, the development and validation of a three-dimensional (3D) nnU-Net model for segmenting the arterial phase of renal enhanced CT scans; secondly, the utilization of the 3D nnU-Net model for quantitative evaluation of CKD. The 3D nnU-Net model achieved a mean Dice Similarity Coefficient (DSC) of 93.53% for renal parenchyma and 81.48% for renal cortex. Statistically significant differences were observed among different stages of renal function for renal parenchyma volume (VRP), renal cortex volume (VRC), renal medulla volume (VRM), the CT values of renal parenchyma (HuRP), the CT values of renal cortex (HuRC), and the CT values of renal medulla (HuRM) (F = 93.476, 144.918, 9.637, 170.533, 216.616, and 94.283; p < 0.001). Pearson correlation analysis revealed significant positive associations between glomerular filtration rate (eGFR) and VRP, VRC, VRM, HuRP, HuRC, and HuRM (r = 0.749, 0.818, 0.321, 0.819, 0.820, and 0.747, respectively, all p < 0.001). Similarly, a negative correlation was observed between serum creatinine (Scr) levels and VRP, VRC, VRM, HuRP, HuRC, and HuRM (r = - 0.759, - 0.777, - 0.420, - 0.762, - 0.771, and - 0.726, respectively, all p < 0.001). For predicting CKD in males, VRP had an area under the curve (AUC) of 0.726, p < 0.001; VRC, AUC 0.765, p < 0.001; VRM, AUC 0.578, p = 0.018; HuRP, AUC 0.912, p < 0.001; HuRC, AUC 0.952, p < 0.001; and HuRM, AUC 0.772, p < 0.001 in males. In females, VRP had an AUC of 0.813, p < 0.001; VRC, AUC 0.851, p < 0.001; VRM, AUC 0.623, p = 0.060; HuRP, AUC 0.904, p < 0.001; HuRC, AUC 0.934, p < 0.001; and HuRM, AUC 0.840, p < 0.001. The optimal cutoff values for predicting CKD in HuRP are 99.9 Hu for males and 98.4 Hu for females, while in HuRC are 120.1 Hu for males and 111.8 Hu for females. The kidney was effectively segmented by our AI-based 3D nnU-Net model for enhanced renal CT images. In terms of mild kidney injury, the CT values exhibited higher sensitivity compared to kidney volume. The correlation analysis revealed a stronger association between VRC, HuRP, and HuRC with renal function, while the association between VRP and HuRM was weaker, and the association between VRM was the weakest. Particularly, HuRP and HuRC demonstrated significant potential in predicting renal function. For diagnosing CKD, it is recommended to set the threshold values as follows: HuRP < 99.9 Hu and HuRC < 120.1 Hu in males, and HuRP < 98.4 Hu and HuRC < 111.8 Hu in females.
Assuntos
Rim , Insuficiência Renal Crônica , Tomografia Computadorizada por Raios X , Humanos , Insuficiência Renal Crônica/diagnóstico por imagem , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Rim/diagnóstico por imagem , Adulto , Redes Neurais de Computação , Meios de Contraste , Imageamento Tridimensional/métodosRESUMO
A novel conversion of 1,5-diynols into sulfonylated benzo[b]fluorenes is reported by a TFA-promoted cascade cyclization with sodium sulfinates under mild conditions. This strategy provides an efficient and practical approach for accessing various sulfonated benzo[b]fluorenes in moderate to excellent yields under metal-free conditions. On the basis of the control experimental results and density functional theory calculations, a possible cascade transformation mechanism consisting of the dehydration of propargylic alcohols, sulfonylation, allenylation, and Schmittel-type cyclization is proposed. It is worth noting that TFA played an important role in this cascade cyclization, which promoted C-SO2R bond cleavage in a propargylic sulfone intermediate to form allenyl sulfones, followed by Schmittel-type cyclization to give the target product.
RESUMO
This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.
RESUMO
A novel palladium-catalyzed intermolecular dearomatization of furans with alkynes via a three-component formal [3 + 2] spiroannulation/allylic substitution cascade reaction has been successfully developed for the stereoselective assembly of spiro 2,5-dihydrofuran frameworks. High step economy and efficacy as well as excellent stereoselectivity were achieved for a broad substrate scope. Two new C-C bonds and one new C-O bond were generated sequentially in a one-pot manipulation. The yielded spiro 2,5-dihydrofuran skeleton bearing a tetrasubstituted carbon center constitutes the core structure for plenty of useful natural products or corresponding analogues. This work represents a significant advancement in the dearomatization strategy for furan heterocycles and provides a practical methodology for expedited access to complex spiro dihydrofuran scaffolds.
RESUMO
Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, and analytical chemistry. In recent years, OTs have been combined with microfluidic chips to overcome their limitations in, for instance, speed and efficiency, creating a technology known as "optofluidic tweezers." This paper describes static OTs briefly first. Next, we overview recent developments in optofluidic tweezers, summarizing advancements in capture, manipulation, sorting, and measurement based on different technologies. The focus is on various kinds of optofluidic tweezers, such as holographic optical tweezers, photonic-crystal optical tweezers, and waveguide optical tweezers. Moreover, there is a continuing trend of combining optofluidic tweezers with other techniques to achieve greater functionality, such as antigen-antibody interactions and Raman tweezers. We conclude by summarizing the main challenges and future directions in this research field.
RESUMO
Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. Metal antennas are widely used because of their small size, but they are difficult to be compatible with a CMOS. All-dielectric antennas are easier to integrate with Si waveguides, but are generally larger in size. In this paper, we propose the design of a small-sized, high-efficiency semicircular dielectric grating antenna. The antenna's key size is only 2.37µm×4.74µm, and the emission efficiency reaches over 64% in the wavelength range from 1.16 to 1.61 µm. The antenna provides a new, to the best of our knowledge, approach for three-dimensional optical interconnections between different decks of integrated photonic circuits.
RESUMO
We propose a compact, ultrabroadband and temperature-insensitive adiabatic directional coupler based on rib silicon waveguide-enabling arbitrary splitting ratios. Simulation results show that the device can achieve arbitrary splitting ratios from 1400 to 1600 nm, equal to 50%:50%, 60%:40%, 70%:30%, 80%:20%, and 90%:10% for the fundamental transverse electric mode. The designed device has an excess loss of less than 0.19 dB on the operational waveband. Furthermore, the proposed device shows a great robustness to fabrication imperfection, with a waveguide width deviation of 50 nm and ambient temperature change from 0°C to 200°C. These properties make the design a potential candidate for ultrahigh-density photonic integration chips.
RESUMO
A general and metal-free protocol for the construction of benzo[b]fluorenyl thiophosphates was developed through the cascade cyclization of easily prepared diynols and (RO)2P(O)SH, with water as the only byproduct. The novel transformation involved the allenyl thiophosphate as the key intermediate, followed by Schmittel-type cyclization to achieve the desired products. Notably, (RO)2P(O)SH acted not only as a nucleophile but also as an acid-promoter to initiate the reaction.
RESUMO
BACKGROUND: Total laparoscopic anterior resection (tLAR) and natural orifice specimen extraction surgery (NOSES) has been widely adopted in the treatment of rectal cancer (RC). However, no study has been performed to predict the short-term outcomes of tLAR using machine learning algorithms to analyze a national cohort. METHODS: Data from consecutive RC patients who underwent tLAR were collected from the China NOSES Database (CNDB). The random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), deep neural network (DNN), logistic regression (LR) and K-nearest neighbor (KNN) algorithms were used to develop risk models to predict short-term complications of tLAR. The area under the receiver operating characteristic curve (AUROC), Gini coefficient, specificity and sensitivity were calculated to assess the performance of each risk model. The selected factors from the models were evaluated by relative importance. RESULTS: A total of 4313 RC patients were identified, and 667 patients (15.5%) developed postoperative complications. The machine learning model of XGBoost showed more promising results in the prediction of complication than other models (AUROC 0.90, P < 0.001). The performance was similar when internal and external validation was used. In the XGBoost model, the top four influential factors were the distance from the lower edge of the tumor to the anus, age at diagnosis, surgical time and comorbidities. In risk stratification analysis, the rate of postoperative complications in the high-risk group was significantly higher than in the medium- and low-risk groups (P < 0.001). CONCLUSION: The machine learning model shows potential benefits in predicting the risk of complications in RC patients after tLAR. This novel approach can provide reliable individual information for surgical treatment recommendations.
Assuntos
Laparoscopia , Neoplasias Retais , Humanos , Estudos Retrospectivos , Neoplasias Retais/cirurgia , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Complicações Pós-Operatórias/etiologia , Aprendizado de Máquina , AlgoritmosRESUMO
Rigidly planar polycyclic phosphacycles featuring an internal dioxaphosphorane are promising photofunctional materials. However, the lack of efficient synthetic methods resulted in limited structural diversities which significantly hampered extensive study. Herein, we report a straightforward three-component synthesis of novel dioxaphosphorane-fused diphosphacycles with distinctive photophysical properties. Control experiments and theory calculations were performed to account for a plausible reaction mechanism. We also systematically investigated the structure-property relationships of these unprecedented platforms by combining experiments (X-ray analysis, optical and redox properties) and theoretical computations. Based on their unique structure and properties, a novel fluorescent switch for pH sensing was revealed by a dynamic ring-opening/ring-closing process.
RESUMO
3D doping structure has significant advantages in modulation efficiency and loss compared with 2D modulator doping profiles. However, to the best of our knowledge, previous work on 3D simulation methods for interdigitated doping designs applied simplified models, which prohibited complex 3D doping. In this work, innovative omni junctions, based on the effective 3D Monte-Carlo method, are believed to be the first proposed for high-performance modulators. Simulation results show that the modulation efficiency reaches 0.88 V·cm, while the loss is only 16 dB/cm, with capacitance below 0.42 pF/mm. This work provides a modulator design with superior modulation efficiency and serviceability for high-speed datacom.
RESUMO
Low-carbon agriculture is essential for protecting the global climate and sustainable agricultural economics. Since China is a predominantly agricultural country, the adoption of low-carbon agricultural technologies by local farmers is crucial. The past literature on low-carbon technologies has highlighted the influence of demographic, economic, and environmental factors, while the psychological factors have been underexplored. A questionnaire-based approach was used to assess the psychological process underlying the adoption of low-carbon agricultural technologies by 1,114 Chinese rice farmers in this paper, and structural equation modeling (SEM) was empirically employed to test our theoretical model. The results indicated that farmers' low-carbon production attitude and behavioral efficiency perception directly and positively affected the adoption of low-carbon agricultural technologies and indirectly affected it via low-carbon production intention. Besides, production implementation cost and socio-environmental factor could moderate the direct effects of low-carbon production attitude, behavioral efficiency perception, and low-carbon production intention on farmers' adoption of low-carbon agricultural technologies. In this respect, socio-environmental factor yielded more significant moderating effects. Additionally, this research provides policy implications for promoting low-carbon agricultural technologies in developing countries and regions.
RESUMO
Patients with ulcerative colitis (UC) have been found to be frequently associated with secondary liver injury (SLI). In this study, we investigated the protective effect of GA on dextran sodium sulfate (DSS)-induced SLI in mice and its mechanism. The SLI was established by adding 4% DSS in the drinking water of mice, and the effects of GA (5, 20 mg/kg, p.o., once a day for 7 days) in hepatic tissues were analyzed. HepG2 cells were induced by lipopolysaccharide (LPS) to detect the effect of GA on ferroptosis and the underlying mechanism. Pathological damage was determined by H&E. Liver parameters (AST and ALT), antioxidant enzyme activities (MDA and SOD), and the level of Fe2+ in the liver were detected by kits. Cytokine levels (TNF-α, IL-1ß, and IL-6) and Gpx4 activity in the liver were detected by ELISA. Finally, the activation of nuclear factor erythroid 2-like 2 (Nrf2) was detected to explore the mechanism. The results indicated that GA significantly attenuated DSS-induced hepatic pathological damage, liver parameters, and cytokine levels and increased the antioxidant enzyme activities. Moreover, GA attenuated ferroptosis in DSS-induced liver injury and upregulated Gpx4 expression in DSS-induced mice. Mechanistic experiments revealed that GA activated Nrf2 in mice. Taken together, this study demonstrates that GA can alleviate ferroptosis in SLI in DSS-induced colitis mice, and its protective effects are associated with activating the Nrf2-Gpx4 signaling pathway.
Assuntos
Colite , Água Potável , Ferroptose , Animais , Antioxidantes/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Diarileptanoides , Interleucina-6/farmacologia , Lipopolissacarídeos/efeitos adversos , Fígado/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Due to the complexity and diverse causes, the pathological mechanism of diet-induced colonic injury and colitis remains unclear. In this study, we studied the effects of the combination of a high-fat diet (HFD) plus alcohol on colonic injury in mice. We found HFD plus alcohol treatment induced disturbance of the gut microbiota; increased the production of intestinal toxins lipopolysaccharide (LPS), indole, and skatole; destroyed the stability of the intestinal mucosa; and caused the colonic epithelial cells damage through the activation of nuclear factor (NF)-κB and aromatic hydrocarbon receptors (AhR) signaling pathways. To mimic the effect of HFD plus alcohol in vivo, NCM460 cells were stimulated with alcohol and oleic acid with/without intestinal toxins (LPS, indole, and skatole) in vitro. Combinative treatment of alcohol and oleic acid caused moderate damage on NCM460 cells, while combination with intestinal toxins induced serious cell apoptosis. Western blot data indicated that the activation of NF-κB and AhR pathways further augmented after intestinal toxins treatment in alcohol- and oleic acid-treated colonic cells. This study provided new evidence for the relationship between diet pattern and colonic inflammation, which might partly reveal the pathological development of diet-induced colon disease and the involvement of intestinal toxins.
RESUMO
Color, as one of the most critical visual factors influencing consumer decisions, has been widely used in e-commerce marketing. However, the effects of product-background saturation combination on consumers' willingness to purchase products with different heaviness attributes (e.g., heaviness-positive products or heaviness-negative products) have not been conclusively determined. The current study demonstrated the effects of product-background saturation combination on product heaviness perception and its downstream consequences. Based on behavioral method, study 1 showed that a patch of color placed in a pale background (the saturation of the background is lower than the saturation of the color patch) was perceived as visually heavier than that in a colorful background (the saturation of the background is higher than the saturation of the color patch). Study 2 applied event-related potentials (ERPs) method to explore the underlying neural mechanisms of how the interactions between the presentation modes and the product types affect consumer decisions. Behaviorally, compared to the colorful background, the pale background would lead to a higher purchase rate for the heaviness-positive products, whereas the opposite results were found for the heaviness-negative products. Furthermore, for both the heaviness-positive and heaviness-negative products, a shorter reaction time would be observed in the pale background condition than in the colorful background condition. Neurophysiologically, the pale background would result in smaller N2 component and larger P3 component compared to the colorful background for the heaviness-positive products, while the reverse held for the heaviness-negative products. Smaller N2 component implies decreased perceptual conflicts and larger P3 component implies increased decision confidence, suggesting that e-retailers should present heaviness-positive products with pale backgrounds and heaviness-negative products with colorful backgrounds.
RESUMO
[This corrects the article DOI: 10.3389/fnins.2022.757316.].