Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 242: 107799, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703699

RESUMO

OBJECTIVE: This study aims to demonstrate that the conformal microwave ablation (MWA) of liver tumors could be attained by optimizing the structure of an aperiodic tri-slot coaxial antenna, its insertion depth, and input power. METHODS: A computational MWA model with an aperiodic tri-slot coaxial antenna operating at the frequency of 2.45 GHz was built and validated by both an ex vivo and a pilot in vivo experiment with porcine healthy livers. The validated in vivo computational MWA model implemented with a liver tumor was then used as a testbed to investigate the conformal ablation of liver tumors. Five liver tumors in different sizes and shapes were investigated. A genetic algorithm optimization method (NSGA-II) was used to optimize the structure of antenna, insertion depth of antenna, and microwave antenna input power for the conformal ablation of liver tumors. RESULTS: The validation results showed that a good agreement in both the spatiotemporal temperature distribution and ablation zone was found between the computer model and the ex vivo experiments at both 45 W, 5 min and 60 W, 3 min treatments and the in vivo experiment at 45 W, 5 min treatment. The optimized simulation results confirmed that five cases of liver tumors in different sizes and shapes can be conformally ablated by optimizing the aperiodic tri-slot coaxial antenna, antenna insertion depth, and microwave antenna input power. CONCLUSION: This paper demonstrates that the aperiodic tri-slot coaxial antenna can be optimized with the insertion depth and input power for the conformal ablation of liver tumors, regardless the size and shape of liver tumors.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Animais , Suínos , Desenho de Equipamento , Neoplasias Hepáticas/cirurgia , Fígado/cirurgia , Simulação por Computador , Ablação por Cateter/métodos
2.
Phys Med ; 84: 254-264, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33773908

RESUMO

Microwave (MW) antenna is a key element in microwave ablation (MWA) treatments as the means that energy is delivered in a focused manner to the tumor and its surrounding area. The energy delivered results in a rise in temperature to a lethal level, resulting in cell death in the ablation zone. The delivery of energy and hence the success of MWA is closely dependent on the structure of the antennas. Therefore, three design criteria, such as expected ablation zone pattern, efficiency of energy delivery, and minimization of the diameter of the antennas have been the focus along the evolution of the MW antenna. To further improve the performance of MWA in the treatment of various tumors through inventing novel antennas, this article reviews the state-of-the-art and summarizes the development of MW antenna designs regarding the three design criteria.


Assuntos
Técnicas de Ablação , Micro-Ondas , Desenho de Equipamento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA