Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Exp Bot ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706401

RESUMO

Wax biosynthesis is strictly regulated by many regulators under different environmental conditions. Our previous study showed that the regulation module miR156/SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9)/DEWAX is identified to be involved in the diurnal regulation of wax production, however, it was unknown if other SPLs are also involved in the wax synthesis. Here, we reported that SPL13 regulates drought-induced wax production as well. Moreover, its regulatory role directly or indirectly affects the expression of two wax biosynthesis genes CER1 and CER4. Further study showed that SPL13 together with SPL9 redundantly regulated the wax accumulation upon either normal conditions or drought stress, simultaneous mutation of both genes additively enhanced cuticle permeability and decreased the drought tolerance. However, different from SPL9, SPL13 seemed not to participate in the DEWAX-mediated diurnal regulation of wax production.

2.
Plant Physiol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709681

RESUMO

Cuticular wax is a protective layer on the aerial surfaces of land plants. In Arabidopsis (Arabidopsis thaliana), cuticular wax is mainly constituted of compounds derived from very-long-chain fatty acids (VLCFAs) with chain lengths longer than C28. CER2-LIKE (ECERIFERUM2-LIKE) proteins interact with CER6/KCS6 (ECERIFERUM6/ß-Ketoacyl-CoA Synthase6), the key enzyme of the fatty acid elongase complex, to modify its substrate specificity for VLCFA elongation past C28. However, the molecular regulatory mechanism of CER2-LIKE proteins remains unclear. Arabidopsis eceriferum19 (cer19) mutants display wax-deficient stems caused by loss of waxes longer than C28, indicating that CER19 may participate in the CER2-LIKE-mediated VLCFA elongation past C28. Using positional cloning and genetic complementation, we showed that CER19 encodes Acetyl-CoA Carboxylase1 (ACC1), which catalyzes the synthesis of malonyl-CoA, the essential substrate for the CER6/KCS6-mediated condensation reaction in VLCFA synthesis. We demonstrated that ACC1 physically interacts with CER2-LIKE proteins via split-ubiquitin yeast two-hybrid (SUY2H) and firefly luciferase complementation imaging (LCI) analysis. Additionally, heterologous expression in yeast and genetic analysis in Arabidopsis revealed that ACC1 affects CER2 activity to influence VLCFA elongation past C28. These findings imply that CER2-LIKE proteins might function as a link between ACC1 and CER6/KCS6 and subsequently enhance CER6/KCS6 binding to malonyl-CoA for further utilization in VLCFA elongation past C28. This information deepens our understanding of the complex mechanism of cuticular wax biosynthesis.

3.
Plant J ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456566

RESUMO

The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.

4.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005579

RESUMO

Machinery degradation assessment can offer meaningful prognosis and health management information. Although numerous machine prediction models based on artificial intelligence have emerged in recent years, they still face a series of challenges: (1) Many models continue to rely on manual feature extraction. (2) Deep learning models still struggle with long sequence prediction tasks. (3) Health indicators are inefficient for remaining useful life (RUL) prediction with cross-operational environments when dealing with high-dimensional datasets as inputs. This research proposes a health indicator construction methodology based on a transformer self-attention transfer network (TSTN). This methodology can directly deal with the high-dimensional raw dataset and keep all the information without missing when the signals are taken as the input of the diagnosis and prognosis model. First, we design an encoder with a long-term and short-term self-attention mechanism to capture crucial time-varying information from a high-dimensional dataset. Second, we propose an estimator that can map the embedding from the encoder output to the estimated degradation trends. Then, we present a domain discriminator to extract invariant features from different machine operating conditions. Case studies were carried out using the FEMTO-ST bearing dataset, and the Monte Carlo method was employed for RUL prediction during the degradation process. When compared to other established techniques such as the RNN-based RUL prediction method, convolutional LSTM network, Bi-directional LSTM network with attention mechanism, and the traditional RUL prediction method based on vibration frequency anomaly detection and survival time ratio, our proposed TSTN method demonstrates superior RUL prediction accuracy with a notable SCORE of 0.4017. These results underscore the significant advantages and potential of the TSTN approach over other state-of-the-art techniques.

5.
Nat Plants ; 9(12): 1968-1977, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932483

RESUMO

Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.


Assuntos
Evolução Biológica , Gleiquênias , Filogenia , Lipídeos , Gleiquênias/genética , Sementes/genética
6.
J Exp Bot ; 74(21): 6575-6587, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37615538

RESUMO

The plant cuticle, consisting of wax and cutin, is involved in adaptations to various environments. ß-Ketoacyl-CoA synthases (KCSs) usually serve as a component of the fatty acid elongation complex that participates in the production of very long-chain fatty acids and provides precursors for the synthesis of various lipids, including wax; however, we recently reported that KCS3 and KCS12 negatively regulate wax biosynthesis. In this current study, we observed that unlike KCS3-overexpressing (OE) lines, KCS12-OE lines had fused floral organs because of abnormal cuticle biosynthesis. This prompted us to compare the functions of KCS3 and KCS12 during cuticle formation. Mutation of KCS3 caused greater effects on wax production, whereas mutation of KCS12 exerted more severe effects on cutin synthesis. The double-mutant kcs3 kcs12 had significantly increased wax and cutin contents compared to either single-mutant, suggesting that KCS12 and KCS3 have additive effects on cuticle biosynthesis. Cuticle permeability was greater for the double-mutant than for the single mutants, which ultimately led to increased susceptibility to drought stress and floral-organ fusion. Taken together, our results demonstrate the regulatory roles of KCS3 and KCS12 during cuticle biosynthesis, and show that maintaining KCS3 and KCS12 expression at certain levels is essential for the formation of a functional cuticle layer.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ceras , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Permeabilidade , Ceras/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase
7.
Nat Commun ; 14(1): 4205, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452017

RESUMO

Metallic zinc anodes of aqueous zinc ion batteries suffer from severe dendrite and side reaction issues, resulting in poor cycling stability, especially at high rates and capacities. Herein, we develop two three-dimensional hierarchical graphene matrices consisting of nitrogen-doped graphene nanofibers clusters anchored on vertical graphene arrays of modified multichannel carbon. The graphene matrix with radial direction carbon channels possesses high surface area and porosity, which effectively minimizes the surface local current density, manipulates the Zn2+ ions concentration gradient, and homogenizes the electric field distribution to regulate Zn deposition. As a result, the engineered matrices achieve a superior coulombic efficiency of 99.67% over 3000 cycles at 120 mA cm-2, the symmetric cells with the composite zinc anode demonstrates 2600 h dendrite-free cycles at 80 mA cm-2 and 80 mAh cm-2. The as-designed full cell exhibits an inspiring capacity of 16.91 mAh cm-2. The Zn capacitor matched with activated carbon shows a superior long-term cycle performance of 20000 cycles at 40 mA cm-2. This strategy of constructing a 3D hierarchical structure for Zn anodes may open up a new avenue for metal anodes operating under high rates and capacities.


Assuntos
Grafite , Carvão Vegetal , Fontes de Energia Elétrica , Eletrodos , Zinco
8.
Plant Cell ; 35(6): 2251-2270, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36807983

RESUMO

The plant cuticle, a structure primarily composed of wax and cutin, forms a continuous coating over most aerial plant surfaces. The cuticle plays important roles in plant tolerance to environmental stress, including stress imposed by drought. Some members of the 3-KETOACYL-COA SYNTHASE (KCS) family are known to act as metabolic enzymes involved in cuticular wax production. Here we report that Arabidopsis (Arabidopsis thaliana) KCS3, which was previously shown to lack canonical catalytic activity, instead functions as a negative regulator of wax metabolism by reducing the enzymatic activity of KCS6, a key KCS involved in wax production. We demonstrate that the role of KCS3 in regulating KCS6 activity involves physical interactions between specific subunits of the fatty acid elongation complex and is essential for maintaining wax homeostasis. We also show that the role of the KCS3-KCS6 module in regulating wax synthesis is highly conserved across diverse plant taxa from Arabidopsis to the moss Physcomitrium patens, pointing to a critical ancient and basal function of this module in finely regulating wax synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Mutação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
9.
New Phytol ; 236(6): 2115-2130, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36110041

RESUMO

Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epiderme Vegetal/metabolismo , Regulação da Expressão Gênica de Plantas , Ceras/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo
10.
Front Cardiovasc Med ; 9: 919224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958416

RESUMO

Background: Short-term readmission for pediatric pulmonary hypertension (PH) is associated with a substantial social and personal burden. However, tools to predict individualized readmission risk are lacking. This study aimed to develop machine learning models to predict 30-day unplanned readmission in children with PH. Methods: This study collected data on pediatric inpatients with PH from the Chongqing Medical University Medical Data Platform from January 2012 to January 2019. Key clinical variables were selected by the least absolute shrinkage and the selection operator. Prediction models were selected from 15 machine learning algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC). The outcome of the predictive model was interpreted by SHapley Additive exPlanations (SHAP). Results: A total of 5,913 pediatric patients with PH were included in the final cohort. The CatBoost model was selected as the predictive model with the greatest AUC for 0.81 (95% CI: 0.77-0.86), high accuracy for 0.74 (95% CI: 0.72-0.76), sensitivity 0.78 (95% CI: 0.69-0.87), and specificity 0.74 (95% CI: 0.72-0.76). Age, length of stay (LOS), congenital heart surgery, and nonmedical order discharge showed the greatest impact on 30-day readmission in pediatric PH, according to SHAP results. Conclusions: This study developed a CatBoost model to predict the risk of unplanned 30-day readmission in pediatric patients with PH, which showed more significant performance compared with traditional logistic regression. We found that age, LOS, congenital heart surgery, and nonmedical order discharge were important factors for 30-day readmission in pediatric PH.

11.
Food Funct ; 13(17): 8829-8849, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920178

RESUMO

Obesity is a widespread medical problem, for which many drugs have been developed, each with its own limitations. Orlistat, a lipase inhibitor, functions as a fat absorption blocker and is a widely used over-the-counter drug in China. Psyllium husk, in contrast, is a food source rich in dietary fibre and is beneficial for weight loss because it reduces appetite. Here, it was investigated how psyllium husk treatments affect mice with a high-fat diet (HFD)-induced obesity, using obesity-related indices, metabolism indices, and gut microbiota, compared to orlistat treatments. Orlistat had a greater effect on weight loss, whereas psyllium husk had a greater effect at reducing serum and liver cholesterol and triglyceride levels. Treatments had similar effects on controlling the body fat rate, the expression level of farnesoid X receptor, sterol 27-hydroxylase and oxysterol 7-hydroxylase (CYP7B1) in the liver, and the regulation of major bile acids such as cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid in faecal content. However, the expression of CYP7A1 in the liver and the structures of faecal bile acids were different between the two drugs. Furthermore, although they also had similar effects on the gut microbiota at the phylum level, there were differences at the genus level for Roseburia, Bacteroides, Faecalibacterium, Coprobacillus, and Akkernansia, which led to the difference in the serum lipopolysaccharide (LPS) level. Orlistat increased the food intake of the obese mice that were fed a HFD, which led to an increase in water intake, serum triglyceride levels, and lower glucose tolerance. Although orlistat is considered a suitable drug for weight loss, psyllium husk is a comparatively more cost-effective choice for ameliorating hypercholesterolemia and non-alcoholic fatty liver disease caused by a HFD.


Assuntos
Fármacos Antiobesidade , Hipercolesterolemia , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Psyllium , Animais , Fármacos Antiobesidade/farmacologia , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Orlistate , Psyllium/metabolismo , Triglicerídeos/metabolismo , Redução de Peso
12.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457268

RESUMO

3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.


Assuntos
Regulação da Expressão Gênica de Plantas , Ceras , Flores/genética , Flores/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ceras/metabolismo
13.
New Phytol ; 233(6): 2458-2470, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942034

RESUMO

Iso-branched wax compounds are well known in plants, but their biosynthetic pathways are still mostly unknown. It has been speculated that branched waxes are derived from branched-chain amino acid (BCAA) catabolism, but the evidence for this is very limited. Gas chromatography-flame ionisation detection (GC-FID) analysis revealed that mutations in two subunits of the branched-chain ketoacid dehydrogenase (BCKDH) complex, a key enzyme complex in the degradation of BCAAs, significantly decreased the amounts of branched wax compounds, indicating that BCAA degradation may be integral to the synthesis of iso-branched wax. Substrate feeding studies further revealed that the metabolic precursor of iso-branched wax compounds is isobutyric acid (iBA), which is derived from valine degradation in Arabidopsis. We also isolated a novel mutant and found that its branched wax deficient phenotype could not be rescued by iBA. Map-based cloning together with complementation analysis revealed that mutation in ACYL-ACTIVATING ENZYME 9 (AAE9) is responsible for this phenotype. Genetic and enzyme activity analysis demonstrated that AAE9 is located downstream of the BCAA degradation pathway, and that it activates iBA to isobutyryl-CoA for use on branched wax synthesis. Taken together, our study demonstrates that AAE9 is a key factor connecting BCAA catabolism with branched wax biosynthesis.


Assuntos
Aminoácidos de Cadeia Ramificada , Proteínas de Arabidopsis , Arabidopsis , Coenzima A Ligases , Ceras , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ceras/metabolismo
14.
Front Pediatr ; 9: 756095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820343

RESUMO

Objective: We explored the risk factors for intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) and constructed a prediction model based on machine learning algorithms. Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated hospitals of Chongqing Medical University from January 2015 to August 2020 was conducted. All patients were divided into IVIG-responsive and IVIG-resistant groups, which were randomly divided into training and validation sets. The independent risk factors were determined using logistic regression analysis. Logistic regression nomograms, support vector machine (SVM), XGBoost and LightGBM prediction models were constructed and compared with the previous models. Results: In total, 1,240 out of 1,398 patients were IVIG responders, while 158 were resistant to IVIG. According to the results of logistic regression analysis of the training set, four independent risk factors were identified, including total bilirubin (TBIL) (OR = 1.115, 95% CI 1.067-1.165), procalcitonin (PCT) (OR = 1.511, 95% CI 1.270-1.798), alanine aminotransferase (ALT) (OR = 1.013, 95% CI 1.008-1.018) and platelet count (PLT) (OR = 0.998, 95% CI 0.996-1). Logistic regression nomogram, SVM, XGBoost, and LightGBM prediction models were constructed based on the above independent risk factors. The sensitivity was 0.617, 0.681, 0.638, and 0.702, the specificity was 0.712, 0.841, 0.967, and 0.903, and the area under curve (AUC) was 0.731, 0.814, 0.804, and 0.874, respectively. Among the prediction models, the LightGBM model displayed the best ability for comprehensive prediction, with an AUC of 0.874, which surpassed the previous classic models of Egami (AUC = 0.581), Kobayashi (AUC = 0.524), Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC = 0.575). Conclusion: The machine learning LightGBM prediction model for IVIG-resistant KD patients was superior to previous models. Our findings may help to accomplish early identification of the risk of IVIG resistance and improve their outcomes.

15.
iScience ; 24(11): 103228, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746697

RESUMO

Crosstalk among ABA, auxin, and ROS plays critical roles in modulating seed germination, root growth, and suberization. However, the underlying molecular mechanisms remain largely elusive. Here, MYB70, a R2R3-MYB transcription factor was shown to be a key component of these processes in Arabidopsis thaliana. myb70 seeds displayed decreased sensitivity, while MYB70-overexpressing OX70 seeds showed increased sensitivity in germination in response to exogenous ABA through MYB70 physical interaction with ABI5 protein, leading to enhanced stabilization of ABI5. Furthermore, MYB70 modulates root system development (RSA) which is associated with increased conjugated IAA content and H2O2/O2 ⋅- ratio but reduced root suberin deposition, consequently affecting nutrient uptake. In support of these data, MYB70 positively regulates the expression of auxin conjugation-related GH3, while negatively peroxidase-encoding and suberin biosynthesis-related genes. Our findings collectively revealed a previously uncharacterized component that modulates ABA and auxin signaling pathways, H2O2/O2 ⋅- balance, and suberization, consequently regulating RSA and seed germination.

16.
Front Med (Lausanne) ; 8: 705515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621757

RESUMO

Background: The objective of this study was to evaluate the prognostic value of clinical characteristics in elderly patients with triple-negative breast cancer (TNBC). Methods: The cohort was selected from the Surveillance, Epidemiology, and End Results (SEER) program dating from 2010 to 2015. Univariate and multivariate analyses were performed using a Cox proportional risk regression model, and a nomogram was constructed to predict the 1-, 3-, and 5-year prognoses of elderly patients with TNBC. A concordance index (C-index), calibration curve, and decision curve analysis (DCA) were used to verify the nomogram. Results: The results of the study identified a total of 5,677 patients who were randomly divided 6:4 into a training set (n = 3,422) and a validation set (n = 2,255). The multivariate analysis showed that age, race, grade, TN stage, chemotherapy status, radiotherapy status, and tumor size at diagnosis were independent factors affecting the prognosis of elderly patients with TNBC. Together, the 1 -, 3 -, and 5-year nomograms were made up of 8 variables. For the verification of these results, the C-index of the training set and validation set were 0.757 (95% CI 0.743-0.772) and 0.750 (95% CI 0.742-0.768), respectively. The calibration curve also showed that the actual observation of overall survival (OS) was in good agreement with the prediction of the nomograms. Additionally, the DCA showed that the nomogram had good clinical application value. According to the score of each patient, the risk stratification system of elderly patients with TNBC was further established by perfectly dividing these patients into three groups, namely, low risk, medium risk, and high risk, in all queues. In addition, the results showed that radiotherapy could improve prognosis in the low-risk group (P = 0.00056), but had no significant effect in the medium-risk (P < 0.4) and high-risk groups (P < 0.71). An online web app was built based on the proposed nomogram for convenient clinical use. Conclusion: This study was the first to construct a nomogram and risk stratification system for elderly patients with TNBC. The well-established nomogram and the important findings from our study could guide follow-up management strategies for elderly patients with TNBC and help clinicians improve individual treatment.

17.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502106

RESUMO

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


Assuntos
Coenzima A Ligases/metabolismo , Glycine max/genética , Lipídeos/biossíntese , Lipídeos de Membrana/biossíntese , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Clonagem Molecular , Coenzima A Ligases/genética , Proteínas de Plantas/genética , Glycine max/metabolismo
18.
Food Res Int ; 143: 110273, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992373

RESUMO

Slow transit constipation (STC) has become an epidemic medical problem. There are several kinds of drugs for constipation; however, each drug has its limitations. The gut microbiota has a close relationship with STC. Lactulose is an effective drug for constipation because it is a kind of bulking laxative and microbioecologic, and it relieves the syndromes of STC. We found that the Chinese Herb Solid Drink (CHSD), which contains medicine food homologous materials such as psyllium husk, sweetalmond, semen sesami nigrum, and hemp seed, has a similar effect on relieving constipation as lactulose, although it has different effects on the gut microbiota. We investigated the mechanisms of CHSD in rats with STC, induced by diphenoxylate, via constipation index and enzyme linked immunosorbent assay (ELISA) analyses using serum and 16S rDNA amplicon and gas chromatography-mass spectroscopy (GC-MS). CHSD enhanced the relative abundance of some types of gut microbiota, such as Blautia, Ruminococcus, Roseburia, Coprococcus, Lachnospira, and Phascolarctobacterium, while lactulose enhanced the relative abundance of Blautia, Phascolarctobacterium, Eubacterium, and Akkernansia in diphenoxylate-induced STC rats. Both CHSD and lactulose enhanced the level of short-chain fatty acids in the faeces of rats; however, the composition of those were different between the two drugs. From the perspective of the gut neuroendocrine system, both CHSD and lactulose could elevate neurotransmitters, such as motilin (MTL) and substance P (SP), which promote intestinal peristalsis and reduce the expression of vasoactive intestinal peptide, which inhibits intestinal peristalsis in the serum of STC rats. CHSD could elevate gastrin expression, which also promoted intestinal peristalsis in serum, while lactulose did not have this effect. Our findings suggest that CHSD may be an effective and safe therapeutic choice for STC.


Assuntos
Microbioma Gastrointestinal , Preparações Farmacêuticas , Animais , China , Constipação Intestinal , Difenoxilato , Lactulose , Ratos
19.
Plant Physiol Biochem ; 161: 1-11, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556720

RESUMO

In plants, Long-chain acyl-CoA synthetases (LACSs) play key roles in activating fatty acids to fatty acyl-CoA thioesters, which are then further involved in lipid synthesis and fatty acid catabolism. LACSs have been intensively studied in Arabidopsis, but its evolutionary relationship in green plants is unexplored. In this study, we performed a comprehensive genome-wide analysis of the LACS gene family across green plants followed by phylogenetic clustering analysis, gene structure determination, detection of conserved motifs, gene expression in tissues and subcellular localization. Our results identified LACS genes in 122 plant species including algae, low land plants (i.e., mosses and lycophytes), monocots, and eudicots. In total, 697 sequences were identified, and 629 sequences were selected because of alignment and some duplication errors. The retrieved amino acid sequences ranged from 271 to 1056 residues and diversified in intron/exon patterns in different LACSs. Phylogenetic clustering grouped LACS gene family into six major clades with distinct potential functions. This classification is well supported by examining gene structure and conserved motifs. Also, gene expression analysis and subcellular localization substantiate with clade division in the phylogeny, indicating that the evolutionary pattern is visible in their functionality. Additionally, experimental analysis of lacs2 mutant validated that LACS2 plays key roles in suberin synthesis. Thus, our study not only provides an evolutionary mechanism underlying functional diversification but also lays the foundation for further elucidation of the LACS gene family.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Coenzima A , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Perfilação da Expressão Gênica , Filogenia
20.
Nat Biotechnol ; 33(6): 617-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26006006

RESUMO

The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.


Assuntos
Genoma Humano , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina de Precisão , Povo Asiático/genética , Sequência de Bases , Mapeamento Cromossômico , Diploide , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA