Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Biomed Eng ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594922

RESUMO

Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human-prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limb prosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.

2.
J Neuroeng Rehabil ; 21(1): 46, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570842

RESUMO

We present an overview of the Conference on Transformative Opportunities for Modeling in Neurorehabilitation held in March 2023. It was supported by the Disability and Rehabilitation Engineering (DARE) program from the National Science Foundation's Engineering Biology and Health Cluster. The conference brought together experts and trainees from around the world to discuss critical questions, challenges, and opportunities at the intersection of computational modeling and neurorehabilitation to understand, optimize, and improve clinical translation of neurorehabilitation. We organized the conference around four key, relevant, and promising Focus Areas for modeling: Adaptation & Plasticity, Personalization, Human-Device Interactions, and Modeling 'In-the-Wild'. We identified four common threads across the Focus Areas that, if addressed, can catalyze progress in the short, medium, and long terms. These were: (i) the need to capture and curate appropriate and useful data necessary to develop, validate, and deploy useful computational models (ii) the need to create multi-scale models that span the personalization spectrum from individuals to populations, and from cellular to behavioral levels (iii) the need for algorithms that extract as much information from available data, while requiring as little data as possible from each client (iv) the insistence on leveraging readily available sensors and data systems to push model-driven treatments from the lab, and into the clinic, home, workplace, and community. The conference archive can be found at (dare2023.usc.edu). These topics are also extended by three perspective papers prepared by trainees and junior faculty, clinician researchers, and federal funding agency representatives who attended the conference.


Assuntos
Pessoas com Deficiência , Reabilitação Neurológica , Humanos , Software , Simulação por Computador , Algoritmos
3.
J Neural Eng ; 21(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176027

RESUMO

Objective.Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activities of residual muscles are similar to that of intact muscles. This study sought to understand potential changes to motor unit (MU) properties after limb amputation.Approach.Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intacttibialis anterior(TA) andgastrocnemius(GA) muscles were recorded while subjects traced profiles targeting up to 20% and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of MU spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman's size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles.Main results.The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates.Significance.We showed peripheral neuromuscular damage also leads to spinal-level functional reorganizations. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.


Assuntos
Membros Artificiais , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Amputação Cirúrgica , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica
4.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941276

RESUMO

Optimizing control parameters is crucial for personalizing prosthetic devices. The current method of finite state machine impedance control (FSM-IC) allows interaction with the user but requires time-consuming manual tuning. To improve efficiency, we propose a novel approach for tuning knee prostheses using continuous impedance functions (CIFs) and Principal Component Analysis (PCA). The CIFs, which represent stiffness, damping, and equilibrium angle, are modeled as fourth-order polynomials and optimized through convex optimization. By applying PCA to the CIFs, we extract principal components (PCs) that capture common features. The weights of these PCs serve as tuning parameters, allowing us to reconstruct various impedance functions. We validated this approach using data from 10 able-bodied individuals walking. The contributions of this study include: i) generating CIFs via convex optimization; ii) introducing a new tuning space based on the obtained CIFs; and iii) evaluating the feasibility of this tuning space.


Assuntos
Prótese do Joelho , Humanos , Impedância Elétrica , Análise de Componente Principal , Caminhada , Algoritmos
5.
Sci Robot ; 8(83): eadf5758, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37851818

RESUMO

Current lower-limb prostheses do not provide active assistance in postural control tasks to maintain the user's balance, particularly in situations of perturbation. In this study, we aimed to address this missing function by enabling neural control of robotic lower-limb prostheses. Specifically, electromyographic (EMG) signals (amplified neural control signals) recorded from antagonistic residual ankle muscles were used to drive a robotic prosthetic ankle directly and continuously. Participants with transtibial amputation were recruited and trained in using the EMG-driven robotic ankle. We studied how using the EMG-controlled ankle affected the participants' anticipatory and compensatory postural control strategies and stability under expected perturbations compared with using their daily passive devices. We investigated the similarity of neuromuscular coordination (by analyzing motor modules) of the participants, using either device in a postural sway task, to that of able-bodied controls. Results showed that, compared with their passive prosthesis, the EMG-controlled prosthesis enabled participants to use near-normative postural control strategies, as evidenced by improved between-limb symmetry in intact-prosthetic center-of-pressure and joint angle excursions. Participants substantially improved postural stability, as evidenced by a reduction in steps or falls using the EMG-controlled prosthetic ankle. Furthermore, after relearning to use residual ankle muscles to drive the robotic ankle in postural control, nearly all participants' motor module structure shifted toward that observed in individuals without limb amputations. Here, we have demonstrated the potential benefit of direct EMG control of robotic lower limb prostheses to restore normative postural control strategies (both neural and biomechanical) toward enhancing standing postural stability in amputee users.


Assuntos
Membros Artificiais , Robótica , Humanos , Fenômenos Biomecânicos , Tornozelo/fisiologia , Equilíbrio Postural/fisiologia
6.
Nat Commun ; 14(1): 4625, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532733

RESUMO

Achieving multicapability in a single soft gripper for handling ultrasoft, ultrathin, and ultraheavy objects is challenging due to the tradeoff between compliance, strength, and precision. Here, combining experiments, theory, and simulation, we report utilizing angle-programmed tendril-like grasping trajectories for an ultragentle yet ultrastrong and ultraprecise gripper. The single gripper can delicately grasp fragile liquids with minimal contact pressure (0.05 kPa), lift objects 16,000 times its own weight, and precisely grasp ultrathin, flexible objects like 4-µm-thick sheets and 2-µm-diameter microfibers on flat surfaces, all with a high success rate. Its scalable and material-independent design allows for biodegradable noninvasive grippers made from natural leaves. Explicitly controlled trajectories facilitate its integration with robotic arms and prostheses for challenging tasks, including picking grapes, opening zippers, folding clothes, and turning pages. This work showcases soft grippers excelling in extreme scenarios with potential applications in agriculture, food processing, prosthesis, biomedicine, minimally invasive surgeries, and deep-sea exploration.

7.
Science ; 381(6654): 141-146, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440630

RESUMO

Artificial intelligence (AI) applications in medical robots are bringing a new era to medicine. Advanced medical robots can perform diagnostic and surgical procedures, aid rehabilitation, and provide symbiotic prosthetics to replace limbs. The technology used in these devices, including computer vision, medical image analysis, haptics, navigation, precise manipulation, and machine learning (ML) , could allow autonomous robots to carry out diagnostic imaging, remote surgery, surgical subtasks, or even entire surgical procedures. Moreover, AI in rehabilitation devices and advanced prosthetics can provide individualized support, as well as improved functionality and mobility (see the figure). The combination of extraordinary advances in robotics, medicine, materials science, and computing could bring safer, more efficient, and more widely available patient care in the future. -Gemma K. Alderton.

8.
Nat Biomed Eng ; 7(4): 473-485, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34059810

RESUMO

Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.


Assuntos
Membros Artificiais , Biônica , Humanos , Desenho de Prótese , Extremidades , Eletrodos
9.
J Nutr ; 152(11): 2483-2492, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774114

RESUMO

BACKGROUND: Vitamin B-12 deficiency can result in irreversible neurologic damages. It is most prevalent among older adults (∼5%-15%), mainly due to impaired absorption. Vitamin B-12 bioavailability varies between food sources, so their importance in preventing deficiency may also vary. OBJECTIVES: Using the NuAge Database and Biobank, we examined the associations between vitamin B-12 intake (total and by specific food groups) and low vitamin B-12 status and deficiency in older adults. METHODS: NuAge-the Quebec Longitudinal Study on Nutrition and Successful Aging-included 1753 adults aged 67-84 y who were followed 4 y. Analytic samples comprised 1230-1463 individuals. Dietary vitamin B-12 intake was assessed annually using three 24-h dietary recalls. Vitamin B-12 status was assessed annually as low serum vitamin B-12 (<221 pmol/L), elevated urinary methylmalonic acid (MMA)/creatinine ratio (>2 µmol/mmol), and a combination of both (deficiency). Vitamin B-12 supplement users were excluded. Multilevel logistic regressions, adjusted for relevant confounders, were used. RESULTS: Across all study years, 21.8%-32.5% of participants had low serum vitamin B-12, 12.5%-17.0% had elevated urine MMA/creatinine, and 10.1%-12.7% had deficiency. Median (IQR) total vitamin B-12 intake was 3.19 µg/d (2.31-4.37). Main sources were "dairy" and "meat, poultry, and organ meats." The ORs (95% CIs) in the fifth quintile compared with the first of total vitamin B-12 intake were as follows: for low serum vitamin B-12, 0.52 (0.37, 0.75; P-trend < 0.0001); for elevated urine MMA/creatinine, 0.63 (0.37, 1.08; P-trend = 0.091); and for vitamin B-12 deficiency, 0.38 (0.18, 0.79; P-trend = 0.006). Similarly, ORs (95% CIs) in the fourth quartile compared with the first of dairy-derived vitamin B-12 intake were 0.46 (0.32, 0.66; P-trend < 0.0001), 0.51 (0.30, 0.87; P-trend = 0.006), and 0.35 (0.17, 0.73; P-trend = 0.003), respectively. No associations were observed with vitamin B-12 from "meat, poultry, and organ meats." CONCLUSIONS: Higher dietary vitamin B-12 intake, especially from dairy, was associated with decreased risk of low vitamin B-12 status and deficiency in older adults. Food groups might contribute differently at reducing risk of deficiency in older populations.


Assuntos
Carne , Deficiência de Vitamina B 12 , Humanos , Idoso , Quebeque/epidemiologia , Estudos Longitudinais , Creatinina , Vitamina B 12 , Deficiência de Vitamina B 12/epidemiologia , Vitaminas
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6573-6576, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892615

RESUMO

Prostheses with direct EMG control could restore amputee's biomechanics structure and residual muscle functions by using efferent signals to drive prosthetic ankle joint movements. Because only feedforward control is restored, it is unclear 1) what neuromuscular control mechanisms are used in coordinating residual and intact muscle activities and 2) how this mechanism changes over guided training with the prosthetic ankle. To address these questions, we applied functional connectivity analysis to an individual with unilateral lower-limb amputation during postural sway task. We built functional connectivity networks of surface EMGs from eleven lower-limb muscles during three sessions to investigate the coupling among different function modules. We observed that functional network was reshaped by training and we identified a stronger connection between residual and intact below knee modules with improved bilateral symmetry after amputee acquired skills to better control the powered prosthetic ankle. The evaluation session showed that functional connectivity was largely preserved even after nine months interval. This preliminary study might inform a unique way to unveil the potential neuromechanic changes that occur after extended training with direct EMG control of a powered prosthetic ankle.


Assuntos
Amputados , Membros Artificiais , Eletromiografia , Humanos , Extremidade Inferior , Músculo Esquelético
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6683-6686, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892641

RESUMO

Motor units (MUs) are the basic unit of motor control. MU synchronization has been evaluated to identify common inputs in neural circuitry during motor coordination. Recent studies have compared common inputs between muscles in the lower limb, but further investigation is needed to compare common inputs to MUs both within a muscle and between MUs of different muscle pairs. The goal of this preliminary study was to characterize levels of common inputs to MUs in three muscle groups: MUs within a muscle, between bilateral homologous pairs, and between agonist/antagonist muscle pairs. To achieve this, surface electromyography (EMG) was recorded during bilateral ankle dorsiflexion and plantarflexion on the right and left tibiales anterior (RTA, LTA) and gastrocnemii (RGA, LGA) muscles. After decomposing EMG into active MU firings, we conducted coherence analyses of composite MU spike trains (CSTs) in each muscle group in both the beta (13-30 Hz) and gamma (30-60 Hz) frequency bands. Our results indicate MUs within a muscle have the greatest levels of common input, with decreasing levels of common input to bilateral and agonist/antagonist muscle pairs, respectively. Additionally, each muscle group exhibited similar levels of common input between the beta and gamma bands. This work may provide a way to unveil mechanisms of functional coordination in the lower limb across motor tasks.


Assuntos
Extremidade Inferior , Músculo Esquelético , Eletromiografia
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7360-7363, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892798

RESUMO

The goal of this research was to develop an intuitive wearable human-machine interface (HMI), utilizing an optical sensor. The proposed system quantifies wrist pronation and supination using an optical displacement sensor. Compared with existing systems, this HMI ensures intuitiveness by relying on direct measurement of forearm position, minimizes involved sensors, and is expected to be long-lasting. To test for feasibility, the developed HMI was implemented to control a prosthetic wrist based on forearm rotation of able-bodied subjects. Performance of optical sensor system (OSS) prosthesis control was compared to electromyography (EMG) based direct control, for six able-bodied individuals, using a clothespin relocation task. Results showed that the performance of OSS control was comparable to direct control, therefore validating the feasibility of the OSS HMI.


Assuntos
Membros Artificiais , Dispositivos Eletrônicos Vestíveis , Antebraço , Humanos , Extremidade Superior , Articulação do Punho
13.
Int IEEE EMBS Conf Neural Eng ; 2021: 1087-1090, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34966480

RESUMO

Proprioception provides information regarding the state of an individual's limb in terms of static position and kinesthesia (dynamic movement). When such feedback is lost or impaired, the performance of dexterous control of our biological limbs or assistive devices tends to deteriorate. In this study, we determined if external vibratory stimulation patterns could allow for the perception of a finger's static position and kinesthesia. Using four tactors and two stimulus levels, eight vibratory settings corresponded to eight discrete finger positions. The transition patterns between these eight settings corresponded to kinesthesia. Three experimental blocks assessed the perception of a finger's static position, speed, and movement (amplitude and direction). Our results demonstrated that both position and kinesthesia could be recognized with over 93% accuracy. The outcomes suggest that vibratory stimulus can inform subjects of static and dynamic aspects of finger proprioception. This sensory stimulation approach can be implemented to improve outcomes in clinical populations with sensory deficits, and to enhance user experience when users interact with assistive devices.

14.
J Neural Eng ; 18(6)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34814128

RESUMO

Objective.Proprioceptive information plays an important role for recognizing and coordinating our limb's static and dynamic states relative to our body or the environment. In this study, we determined how artificially evoked proprioceptive feedback affected the continuous control of a prosthetic finger.Approach.We elicited proprioceptive information regarding the joint static position and dynamic movement of a prosthetic finger via a vibrotactor array placed around the subject's upper arm. Myoelectric signals of the finger flexor and extensor muscles were used to control the prosthesis, with or without the evoked proprioceptive feedback. Two control modes were evaluated: the myoelectric signal amplitudes were continuously mapped to either the position or the velocity of the prosthetic joint.Main results.Our results showed that the evoked proprioceptive information improved the control accuracy of the joint angle, with comparable performance in the position- and velocity-control conditions. However, greater angle variability was prominent during position-control than velocity-control. Without the proprioceptive feedback, the position-control tended to show a smaller angle error than the velocity-control condition.Significance.Our findings suggest that closed-loop control of a prosthetic device can potentially be achieved using non-invasive evoked proprioceptive feedback delivered to intact participants. Moreover, the evoked sensory information was integrated during myoelectric control effectively for both control strategies. The outcomes can facilitate our understanding of the sensorimotor integration process during human-machine interactions, which can potentially promote fine control of prosthetic hands.


Assuntos
Membros Artificiais , Propriocepção , Braço/fisiologia , Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Humanos , Propriocepção/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34532707

RESUMO

Despite the promise of powered lower limb prostheses, existing controllers do not assist many daily activities that require continuous control of prosthetic joints according to human states and environments. The objective of this case study was to investigate the feasibility of direct, continuous electromyographic (dEMG) control of a powered ankle prosthesis, combined with physical therapist-guided training, for improved standing postural control in an individual with transtibial amputation. Specifically, EMG signals of the residual antagonistic muscles (i.e. lateral gastrocnemius and tibialis anterior) were used to proportionally drive pneumatical artificial muscles to move a prosthetic ankle. Clinical-based activities were used in the training and evaluation protocol of the control paradigm. We quantified the EMG signals in the bilateral shank muscles as well as measures of postural control and stability. Compared to the participant's daily passive prosthesis, the dEMG-controlled ankle, combined with the training, yielded improved clinical balance scores and reduced compensation from intact joints. Cross-correlation coefficient of bilateral center of pressure excursions, a metric for quantifying standing postural control, increased to .83(±.07) when using dEMG ankle control (passive device: .39(±.29)). We observed synchronized activation of homologous muscles, rapid improvement in performance on the first day of the training for load transfer tasks, and further improvement in performance across training days (p = .006). This case study showed the feasibility of this dEMG control paradigm of a powered prosthetic ankle to assist postural control. This study lays the foundation for future study to extend these results through the inclusion of more participants and activities.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34458654

RESUMO

Robotic lower-limb prostheses aim to replicate the power-generating capability of biological joints during locomotion to empower individuals with lower-limb loss. However, recent clinical trials have not demonstrated clear advantages of these devices over traditional passive devices. We believe this is partly because the current designs of robotic prothesis controllers and clinical methods for fitting and training individuals to use them do not ensure good coordination between the prosthesis and user. Accordingly, we advocate for new holistic approaches in which human motor control and intelligent prosthesis control function as one system (defined as human-prosthesis symbiosis). We hope engineers and clinicians will work closely to achieve this symbiosis, thereby improving the functionality and acceptance of robotic prostheses and users' quality of life.

18.
J Neural Eng ; 18(4)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34229307

RESUMO

Objective.Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations.Approach.We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses.Main results.This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives.Significance.This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function.


Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Eletromiografia , Humanos , Locomoção , Músculo Esquelético
19.
J Neural Eng ; 18(4)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34153955

RESUMO

Objective.Proprioceptive information provides individuals with a sense of our limb's static position and dynamic movement. Impaired or a lack of such feedback can diminish our ability to perform dexterous motions with our biological limbs or assistive devices. Here we seek to determine whether both static and dynamic components of proprioception can be recognized using variation of the spatial and temporal components of vibrotactile feedback.Approach.An array of five vibrotactors was placed on the forearm of each subject. Each tactor was encoded to represent one of the five forearm postures. Vibratory stimulus was elicited to convey the static position and movement of the forearm. Four experimental blocks were performed to test each subject's recognition of a forearm's simulated static position, rotational amplitude, rotational amplitude and direction, and rotational speed.Main results.Our results showed that the subjects were able to perform proprioceptive recognition based on the delivered vibrotactile information. Specifically, rotational amplitude recognition resulted in the highest level of accuracy (99.0%), while the recognition accuracy of the static position and the rotational amplitude-direction was the lowest (91.7% and 90.8%, respectively). Nevertheless, all proprioceptive properties were perceived with >90% accuracy, indicating that the implemented vibrotactile encoding scheme could effectively provide proprioceptive information to the users.Significance.The outcomes suggest that information pertaining to static and dynamic aspects of proprioception can be accurately delivered using an array of vibrotactors. This feedback approach could be used to potentially evaluate the sensorimotor integration processes during human-machine interactions, and to improve sensory feedback in clinical populations with somatosensory impairments.


Assuntos
Retroalimentação Sensorial , Propriocepção , Antebraço , Objetivos , Humanos , Movimento
20.
IEEE Sens J ; 21(7): 9413-9422, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33776594

RESUMO

Amputees are prone to experiencing discomfort when wearing their prosthetic devices. As the amputee population grows this becomes a more prevalent and pressing concern. There is a need for new prosthetic technologies to construct more comfortable and well-fitted liners and sockets. One of the well-recognized impediments to the development of new prosthetic technology is the lack of practical inner socket sensors to monitor the inner socket environment (ISE), or the region between the residual limb and the socket. Here we present a capacitive pressure sensor fabricated through a simple, and scalable sewing process using commercially available conductive yarns and textile materials. This fully-textile sensor provides a soft, flexible, and comfortable sensing system for monitoring the ISE. We provide details of our low-power sensor system capable of high-speed data collection from up to four sensor arrays. Additionally, we demonstrate two custom set-ups to test and validate the textile-based sensors in a simulated prosthetic environment. Finally, we utilize the textile-based sensors to study the ISE of a bilateral transtibial amputee. Results indicate that the textile-based sensors provide a promising potential for seamlessly monitoring the ISE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA