Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ArXiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39108288

RESUMO

Higher-order properties of functional magnetic resonance imaging (fMRI) induced connectivity have been shown to unravel many exclusive topological and dynamical insights beyond pairwise interactions. Nonetheless, whether these fMRI-induced higher-order properties play a role in disentangling other neuroimaging modalities' insights remains largely unexplored and poorly understood. In this work, by analyzing fMRI data from the Human Connectome Project Young Adult dataset using persistent homology, we discovered that the volume-optimal persistence homological scaffolds of fMRI-based functional connectomes exhibited conservative topological reconfigurations from the resting state to attentional task-positive state. Specifically, while reflecting the extent to which each cortical region contributed to functional cycles following different cognitive demands, these reconfigurations were constrained such that the spatial distribution of cavities in the connectome is relatively conserved. Most importantly, such level of contributions covaried with powers of aperiodic activities mostly within the theta-alpha (4-12 Hz) band measured by magnetoencephalography (MEG). This comprehensive result suggests that fMRI-induced hemodynamics and MEG theta-alpha aperiodic activities are governed by the same functional constraints specific to each cortical morpho-structure. Methodologically, our work paves the way toward an innovative computing paradigm in multimodal neuroimaging topological learning.

2.
Sci Total Environ ; 946: 174233, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936726

RESUMO

Treatment of swine manure by hydrothermal carbonization (HTC) with the aid of different surfactants was first explored in this study. PEG 400 (polyethylene glycol 400) and Tween 80 facilitated the formation of bio-oil. SLS (sodium lignosulfonate) and SDS (sodium dodecyl sulfate) promoted the formation of water-soluble matters/gases. Span 80 enhanced the formation of hydrochar, which resulted in a 50.19 % mass yield, 92.39 % energy yield, and a caloric value of 28.68 MJ/kg. The hydrochar obtained with Span 80 presented a similar combustion performance to raw swine manure and the best pyrolysis performance. The use of Span 80 promoted the transfer of degradation products to hydrochar, especially hydrophobic ester and ketone compounds. Notedly, Span 80 suppressed the synthesis of PAHs during the HTC process, which was reduced to 0.92 mg/kg. Furthermore, the hydrochar produced with Span 80 contained lower contents of heavy metals. On the whole, Span 80 has shown great potential in enhancing the HTC of swine manure. The acting mechanisms of surfactants in the HTC of swine manure included adsorption, dispersion, and electrostatics repulsion.


Assuntos
Esterco , Tensoativos , Esterco/análise , Tensoativos/química , Animais , Suínos
3.
Sci Total Environ ; 899: 165714, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487891

RESUMO

Microplastics (MPs) in sewage pose significant threats to aquatic system. Surface flow wetland (SFW) is a common natural wetland type, and is also used as a cheap and easy-to-build sewage treatment system for small and scattered settlements. However, seasonal variation patterns of MPs in sewage removed by SFW are still limited. Therefore, a field investigation was conducted in an SFW that has been operated for 17 years. The concentration of microplastics in the influent of the SFW (CMPs, in) ranged from 56 ± 6 to 250 ± 14 items L-1. The dominant plastic types were fibers and polyethylene terephthalate (PET). CMPs, in were high in summer and winter, significantly related to the seasonal dressing habits. The removal efficiencies of MPs in SFW were 48.03-92.32 % in different seasons, and the mechanisms of MP removal were different with traditional pollutants. Before flowing out occasionally or by heavy precipitation, MPs were primarily trapped in the SFW and underwent certain oxidation. Simulation experiments demonstrated that 47.5-92.9 % of MPs would be trapped in the SFW, and plants would significantly enhance the trapping capacities. This study sheds light on the seasonal variation characteristics and patterns of MPs in actual sewage, and clarifies the fate of MPs in a long-term operation SFW.

4.
J Hazard Mater ; 446: 130710, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603429

RESUMO

Soil is an important sink for various pollutants. Recent findings suggest that soil and sediment would spontaneously form HO• through Fenton or Fenton-like reactions under natural conditions. In this study, the effects and mechanisms of organic ligands (OLs) on the occurrence of HO• in surface soil/sediment were experimentally and computationally examined. Results confirmed that HO• generation was ND-12.92 nmol/g in surface soil/sediment, and the addition of EDTA-2Na would significantly enhance the yields of HO• by 1.4-352 times. Moisture was the decisive factor of soil HO• generation. The release of Fe(II) from solid into the aqueous phase was essential for the stimulation of HO• in EDTA-2Na suspensions. Furthermore, complexation reactions between Fe(II) and OLs would enhance single electron transfer (SET) reactions and the formation of O2•-. Interestingly, for specific OLs, their stimulations on SET and formation of O2•- would depress HO• generation. Provoking HO• generation by OLs could be efficiently used to degrade sulfamethoxazole in rice field sediment. The study provided new knowledge on how commonly synthetic OLs affect the HO• generation in surface soil/sediment, and it additionally shed light on the engineered stimulation of in-situ Fenton reactions in natural soil/sediment.

5.
Materials (Basel) ; 15(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36556860

RESUMO

Pomelo peel (PP) is a kind of solid waste that is produced in the processing industry of honey pomelo. This study deeply explored the feasibility of recycling PP in the form of hydrochar (HC) by microwave-assisted hydrothermal carbonization (HTC) technology. Under the non-catalytic reaction conditions, the yield of hydrochar initially increased with the rise of reaction temperature (150-210 °C) until it remained relatively stable after 210 °C. Under the CaO-catalytical reaction condition, the yield of hydrochar did not change much at first (150-190 °C) but decreased significantly when the reaction temperature exceeded 190 °C. After the microwave-assisted HTC treatment, the PP-derived HC presented higher aromaticity, carbonization degree, porosity, and caloric value. Compared with raw PP, the nutrients in HC were more stable (conducive to being used as slow-release fertilizer). The application of CaO increased the pH value of HC and effectively promoted the accumulation of phosphorus in HC. The HC produced at 210 °C without any catalyst possessing a high devolatilization ability. Additionally, the HC obtained at 190 °C with CaO as the catalyst presented a high combustion property. In general, PP-derived HC showed great application potential in the field of soil remediation/improvement and solid fuels. This preliminary study would undoubtedly provide some important fundamental understanding of the microwave-assisted HTC of PP.

6.
Heliyon ; 8(11): e11304, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36411895

RESUMO

In this study, water hyacinth was adopted to prepare biochar followed by modification using KMnO4. And the modified biochars were applied in Cd contaminated soil, exploring the effects of water hyacinth biochar on lettuce growth, Cd enrichment, soil enzyme activities and microbial changes by pot experiments. Modified biochar application significantly reduced the Cd accumulation in lettuce shoots and roots. Compared to the control, the application of water hyacinth biochar at 1% rate resulted in significant reduction of Cd contents by 40.7% and 33.7% in the shoots and roots of lettuce. Also, the reduction was 33.3% and 20.8% compared with the application rate of unmodified biochar. With the increase of biochar application, the amount of Cd was absorbed by lettuce shoots and roots showing significant reduction of plant Cd accumulation in response to the biochar application rate. Additionally, the lowest available Cd concentration in soil (1.34 mg kg-1) was obtained with the application of modified biochar at 1% rate, which might be the main reason for the lower Cd concentration in lettuce shoot and root parts. Furthermore, structural analysis showed that Cd was fixed on the modified biochar, in a passivated state, by larger specific surface area, more active sites and more stable covalent binding complexes leading to a strong decrease of the available Cd in the soil. Moreover, it was concluded that the increment of the enzyme activities in the soil was up to 2.51 times significantly following the application of modified water hyacinth biochar with 3% amount. Lastly, 16sRNA sequencing showed that biochar addition may lead to changes of microbial structure and abundance in soil.

7.
J Foot Ankle Surg ; 61(5): 1056-1059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35193803

RESUMO

The traditional lateral "L" approach is common for managing calcaneal fractures with a drawback of significant blood loss. Yet there are no prospective studies on the hemostatic effect of the topical use of tranexamic acid (TXA) in calcaneal fracture surgeries. The purpose of this study was to evaluate the role of topical administration of TXA in reducing postoperative blood loss in calcaneal fractures. Forty participants were randomly distributed into the TXA group (n = 20) and the control group (n = 20). All participants underwent the same surgery via the lateral "L" approach. At the end of the operation, the surgical wound was irrigated with 80 mL 0.5 g/L TXA in the TXA group and 80 mL 0.9% sodium chloride in the control group, followed by the routine use of a drainage tube when closing the incision. Then, 20 mL 0.5 g/L TXA (TXA group) or 20 mL 0.9% sodium chloride solution (control group) was injected retrogradely into the wound through the drainage tube, which was clipped for 30 minutes thereafter. There were no significant differences in the baseline data between the 2 groups (p > .05). There was significantly less blood loss in the first 24 hours and total blood loss postoperation in the TXA group (p < .01). The surgical wounds healed well after surgery in both groups with no complication. We concluded that topical application of TXA in calcaneal fracture surgeries is a safe and useful method that can reduce postoperative blood loss.


Assuntos
Traumatismos do Tornozelo , Antifibrinolíticos , Fraturas Ósseas , Ácido Tranexâmico , Administração Tópica , Perda Sanguínea Cirúrgica/prevenção & controle , Humanos , Hemorragia Pós-Operatória/prevenção & controle , Cloreto de Sódio
8.
Sci Total Environ ; 820: 153348, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077787

RESUMO

Co-liquefaction was combined with hydrothermal liquefaction (HTL) aqueous phase (AP) recirculation to improve the practicality of HTL process. The Chlorella powder (CL), soybean straw (SS), and their mixture (CS) with ratio 1:1 were processed at 300 °C for 20 min, and the AP was recirculated four times. The yield of CS bio-crude was increased (from 24.28% to 31.83%) by co-liquefaction, but remained stable during AP recirculation. By contrast, the yields were increased for CL bio-crude (from 32.40% to 41.19%), SS hydrochar (from 19.55% to 30.88%), and CS hydrochar (from 9.42% to 14.76%) by recirculation. The elemental analysis, chemical composition analysis, functionality analysis, thermogravimetric analysis, and verification experiments (HTL with model AP components) show the N-containing compounds (e.g., amines) in AP were converted into amides (acylation) for CL bio-crude, into N-heterocycles (Maillard reactions) for CS hydrochar, and into Mannich bases for SS hydrochar, which contributed to the increased yield and N content (from 7.27% to 8.82% for CL bio-crude). Furthermore, the O content of CS bio-crude was decreased (from 15.31% to 12.52%) by recirculation, resulted from the conversion of N-heterocyclic ketones into pyrazine derivates. The decreased O content and comprehensive combustibility index (from 0.306 to 0.177) of CS bio-crude indicate the great potential of this craft combination.


Assuntos
Chlorella , Biocombustíveis/análise , Biomassa , Glycine max , Temperatura , Água/química
9.
J Hazard Mater ; 423(Pt B): 127197, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844343

RESUMO

Photodegradation of the insecticide pymetrozine (PYM) was studied on surface of wax films, and in aqueous and nonaqueous phase. The half-life of PYM on the wax surface was approximately 250 times longer than in water. Scavenging experiments, laser flash photolysis, and spectra analysis indicated the first singlet excited state of PYM (S1 *PYM) to be the most important photoinduced species initiating the photodegradation. Quantum chemistry calculations identified significant molecular torsion and changes in the structure C-CN-N of S1 *PYM, and the absolute charges of the CN atoms increased and the bond strength weakened. Free energy surface analysis, and O18 labeling experiments further confirmed that the mechanism was two-step photoinduced hydrolysis. The first step is the hydrolysis of S1 *PYM at CN upon reaction with 2-3 water molecules (one H2O molecule as the catalyst). The second step is an intramolecular hydrogen transfer coupled with the cleavage of C-N bond and formation of two cyclic products. During the interactions, water molecules experience catalytic activation by transferring protons, while there is a negligible solvent effect. Clarifying the detailed photodegradation mechanisms of PYM is beneficial for the development of green pesticides that are photostable and effective on leaf surfaces, and photolabile and detoxified in the aquatic environment.


Assuntos
Praguicidas , Água , Fotólise , Triazinas
10.
Connect Tissue Res ; 63(4): 370-381, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34355626

RESUMO

PURPOSE: This study aimed to elucidate the effect of bone marrow mesenchymal stem cell (BMSC) transplantation combined with the administration of Lugua polypeptide injection into the knee joint cavity to treat knee osteoarthritis (KOA) in rabbits. MATERIAL AND METHODS: Sixty white New Zealand rabbits were randomly divided into the blank, model, Lugua polypeptide, BMSC, and combined (Lugua polypeptide plus BMSC) groups, with 12 rabbits in each group. The mRNA and protein expression levels of cyclin D1, bcl-2, TIMP-1, p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in chondrocytes, and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid were compared. RESULTS: The severity of cartilage damage in the combined group was significantly less (P <0.01). Compared to the MG, the mRNA and protein expression levels of cyclin D1, bcl-2 and TIMP-1 in chondrocytes of the three other groups were significantly increased, while those of p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in the chondrocytes and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid of the three other groups were significantly reduced (P <0.05). The aforementioned indicators in the combined group were significantly better than those of the Lugua polypeptide and BMSCs groups (P <0.05). CONCLUSIONS: BMSC transplantation combined with Lugua polypeptide injection may improve KOA-related cartilage tissue damage in rabbits.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Animais , Medula Óssea/metabolismo , Caspase 3 , Condrócitos/metabolismo , Ciclina D1 , Interleucina-1/farmacologia , Interleucina-6 , Articulação do Joelho/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Osteoartrite do Joelho/terapia , RNA Mensageiro , Coelhos , Inibidor Tecidual de Metaloproteinase-1/genética , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa/farmacologia , Proteína X Associada a bcl-2/farmacologia
11.
Sci Total Environ ; 803: 149874, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492491

RESUMO

The treatment of sewage sludge (SS) is an environmental problem worldwide. In recent years, hydrothermal carbonization (HTC) of SS for hydrochar (HC) has attracted extensive attention. This study preliminarily explored the microwave-assisted HTC of SS for the first time. Increasing the reaction temperature (150-250 °C) and reaction time (0-120 min) resulted in a decrease in the HC yield, and it gradually increased with the rising solid-liquid ratio (0.03-0.25 g/mL). Compared with raw SS, the HC products possessed higher aromaticity, carbonization degree, porosity, and polarity, and lower content of soluble nutrients (N/P/K) and leachable heavy metals (Cu, Zn, Pb, Cd, Cr, and Ni), indicating a lower risk of nutrient and heavy metal loss. Attention should be paid to the total contents of Zn and Cd in HC exceeded the permitted value for use in cultivated land with edible crops. The use of CaO as a catalyst improved the yield of HC, made the HC and process water (PW) weakly alkaline, and further passivated the heavy metals in the HC. In the case of H3PO4, although the conversion of SS was enhanced (lower content of volatile organic matter in HC), the contents of soluble nutrients (N/P/K) in HC/PW increased, and the migration of Zn and Cd into process water was enhanced. The HCs obtained in this study had poor combustion properties, but higher ignition temperatures than raw SS. PW must be properly treated or recycled because it still contained high contents of organic matter and nutrients. This fundamental study provides basic insights into the microwave-assisted HTC of SS.


Assuntos
Metais Pesados , Esgotos , Carbono , Micro-Ondas , Temperatura , Água
12.
Materials (Basel) ; 14(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361308

RESUMO

Hydrothermal carbonization (HTC) has been proved to be a promising technology for swine manure (SM) treatment. Currently, there is a lack of systematic understanding of the transformation characteristics of nutrient speciation in the HTC of SM. In this study, the speciation of the main nutrients (N/P/K) in SM-derived hydrochar produced at different reaction temperatures (200-280 °C) was investigated. The recovery of P (61.0-67.1%) in hydrochars was significantly higher than that of N (23.0-39.8%) and K (25.5-30.0%), and the increase in reaction temperature promoted the recovery of P and reduced the recovery of N. After the HTC treatment, the percentage of soluble/available P was reduced from 61.6% in raw SM to 4.0-23.9% in hydrochars, while that of moderately labile/slow-release P was improved from 29.2% in raw SM feedstock to 65.5-82.7%. An obvious reduction was also found in the amounts of available N (from 51.3% in raw SM feedstock to 33.0-40.5% in hydrochars). The percentages of slow-release N and residual N in hydrochars produced at 240 °C reached the maximum and minimum values (46.4% and 18.9%), respectively. A total of 49.5-58.3% of K retained in hydrochars was residual (invalid) potassium. From the perspective of the mobility and availability of N, P and K only, it was suggested that the HTC of SM should be carried out at 220-240 °C. Compared with the original SM, it is safer and more effective to use the SM-derived hydrochar as an organic fertilizer.

13.
Environ Sci Pollut Res Int ; 28(31): 42217-42229, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797048

RESUMO

Natural iron minerals and zero-valent metals have been widely tested as catalysts for the Fenton-like process, but the systematical comparison study about their catalytic performance was rarely conducted, and the risk of the secondary pollution of toxic heavy metals was still not uncertain. In this paper, a comparison study of applying pyrite, ilmenite, vanadium titano-magnetite (VTM), zero-valent iron (ZVI), and zero-valent copper (ZVC) as Fenton-like catalysts for the removal of imidacloprid was performed. The results showed that ZVI exhibited the highest activity among the recyclable solid catalysts with a removal rate of 96.8% at initial pH 3 using 10.78 mmol/L H2O2, due to iron corrosive dissolution. Vanadium titano-magnetite (VTM) exhibited the best activity at first use among tested minerals but with low reusability. Pyrite with stable morphology showed a medium but sustainable ability to degrade imidacloprid, achieving a removal rate of 10.5% in the fifth use. The reaction much favored the acidic condition of initial pH around 2 or 3. Meanwhile, there was a significant positive correlation between removal efficiency and dissolved Fe or Cu concentration. Pyrite was considered to be a promising catalyst in Fenton-like reaction. It was suggested that the system proceeded predominantly through a homogeneous route via dissolved Fe or Cu ions. Except ZVC and VTM, other tested catalysts showed the low possibility of causing secondary pollution of toxic metals in the application of Fenton-like process.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ferro , Minerais , Neonicotinoides , Nitrocompostos , Oxirredução , Poluentes Químicos da Água/análise
14.
Bioresour Technol ; 330: 125008, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773267

RESUMO

The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.


Assuntos
Microalgas , Biomassa , Técnicas de Cocultura , Floculação , Fungos , Águas Residuárias
15.
Poult Sci ; 100(3): 100877, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33518352

RESUMO

Broiler ascites syndrome (AS), also called pulmonary artery hypertension, is a metabolic disorder that has been observed worldwide in fast-growing broilers. Pulmonary arterial remodeling is a key step in the development of AS. The precise relationship between mRNA and SNP of the pulmonary artery in regulating AS progression remains unclear. In this study, we obtained pulmonary artery tissues from broilers with AS to perform pathologic section and pathologic anatomic observation. SNP, InDel, and mRNA data analysis were carried out using GATK and ANNOVAR software to study the SNP loci of 985 previously reported genes (437 upregulated and 458 downregulated). The pathology results showed that there was a lot of yellow fluid in the abdominal cavity and pericardium, that the ascites cardiac index and hematocrit changed significantly, and that the pulmonary artery had remodeled and become thicker in the disease group. Myocardial sections showed vacuolar degeneration of myocytes and rupture of muscle fibers. In addition, ALDH7A1, IRG1, GGT5, IGSF1, DHX58, USP36, TREML2, SPAG1, CD34, and PLEKHA7 were found to be closely associated with the pathogenesis of pulmonary artery remodeling in AS progression. Taken together, our present study further illuminates the molecular mechanism of pulmonary artery remodeling underlying AS progression.


Assuntos
Ascite , Galinhas , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas , RNA Mensageiro , Remodelação Vascular , Animais , Ascite/genética , Ascite/fisiopatologia , Ascite/veterinária , Galinhas/genética , Polimorfismo de Nucleotídeo Único/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/fisiopatologia , Artéria Pulmonar/fisiopatologia , RNA Mensageiro/genética , Remodelação Vascular/genética
16.
Sci Total Environ ; 763: 144204, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385838

RESUMO

Surface area and porosity are important physical properties of biochar, playing a crucial role in many biochar applications, such as wastewater treatment and soil remediation. The production of engineered biochar with highly porous structure and large surface area has received extensive attention. This paper comprehensively reviewed the effects of biomass and pyrolysis parameters on the surface area and porosity of biochar. The composition of biomass feedstock and pyrolysis temperature are the major influencing factors. It is suggested that the lignocellulosic biomass is an outstanding candidate, wood and woody biomass in particular. Besides, moderate temperatures (400-700 °C) are suitable for the development of the pore structure. Further improvement can be implemented by additional treatments. Activation is the most widely used and effective way to promote biochar surface area and porosity, especially the chemical activation. Enhancement can also be achieved by using other treatment methods, such as carbonaceous materials coating, ball milling, and templating. Future research should focus on upgrading or developing treatment technology to achieve enhanced functionality and porous structure of biochar simultaneously.


Assuntos
Carvão Vegetal , Pirólise , Biomassa , Porosidade , Solo
17.
Injury ; 52(10): 2719-2724, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32430192

RESUMO

BACKGROUND: Surgical treatment of sacral fractures is difficult, both for reduction and stabilization. Traditional surgical reduction and internal fixation require a long duration of operation leading to extra blood loss, extensive tissue damage, and increased risk of post-operation complications. The purpose of this study was to evaluate the feasibility of a minimally invasive technique that could be more effective, more tissue sparing, and lead to less bleeding. We hypothesized that a Pararectus approach for anterior fixation of unstable sacral fractures would be reliable and more advantageous and significantly improve the outcome of sacral fracture repair. METHODS: Twelve patients with unstable sacral fractures were recruited and examined by CT scanning. A 3D model of each sacral fracture was reconstructed. The computer-assisted 3D image of the reduced pelvis was 3D printed for surgery simulation and plate pre-bending. All cases were treated operatively with the anterior anatomical reduction and internal fixation via a minimally invasive Pararectus approach. VAS, Matta, and Majeed scores were used to evaluate outcomes of the operation. RESULTS: Pre-operations were consistent with the actual surgeries in all cases. The pre-bent plates had an anatomical shape specifically fit to the individual pelvis without further adjustment at the time of surgery, and fracture reductions were significantly improved with little invasive tissue damage. The average operation time was 110 min. The intraoperative blood loss and incision length averaged 695 ml and 6.7 cm, respectively. A high percentage of all cases achieved a diaplasis with an excellent or good score according to the Matta and Majeed standards (83.33% and 91.67%, respectively).All patients achieved clinical healing with an average healing time of 8 weeks. CONCLUSION: 3D printing-assisted anterior fixation of unstable sacral fractures via a minimally invasive Pararectus approach is feasible. This new surgical strategy minimizes trauma damage and bleeding and produces satisfactory reduction and therapeutic efficacy.


Assuntos
Fraturas Ósseas , Placas Ósseas , Fixação Interna de Fraturas , Humanos , Impressão Tridimensional , Estudos Retrospectivos , Resultado do Tratamento
18.
Sci Total Environ ; 748: 142383, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113702

RESUMO

Hydrothermal carbonization (HTC)/liquefaction (HTL)/gasification (HTG) are promising processes for biofuel production from biomass containing high moisture. However, wastewater, the aqueous phase (AP) byproduct from these hydrothermal processes, is inevitably produced in large amounts. The AP contains >20% of the biomass carbon, and the total organic carbon in AP is as high as 10-20 g/L. The treatment and utilization of AP are becoming a bottleneck for the industrialization of hydrothermal technologies. The major challenges are the presence of various inhibitory substances and the high complexity of AP. Bioenergy recovery from AP has attracted increasing interest. In the present review, the compositions and characteristics of AP are first presented. Then, the progress in recovering bioenergy from AP by recirculation as the reaction solvent, anaerobic digestion (AD), supercritical water gasification (SCWG), microbial fuel cell (MFC), microbial electrolysis cell (MEC), and microalgae cultivation is discussed. Recirculation of AP as reaction solvent is preferable for AP from biomass with relatively low moisture; AD, MFC/MEC, and microalgae cultivation are desirable for the treatment of AP produced from processing biomass with low lignin content at relatively low temperatures; SCWG is widely applicable but is energy-intensive. Finally, challenges and corresponding strategies are proposed to promote the development of AP valorization technologies. Comprehensive analysis of AP compositions, clarification of the mechanisms of valorization processes, valorization process integration detoxification of AP, polycultures and co-processing of AP with other waste, enhancement in pollutant removal, scaling-up performance, and the techno-economic analysis and life-cycle assessment of valorization systems are promising directions in future investigations.


Assuntos
Microalgas , Águas Residuárias , Biocombustíveis , Biomassa , Temperatura
19.
Bioresour Technol ; 315: 123801, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32673983

RESUMO

Pyrolysis of protein-rich biomass, such as microalgae, macroalgae, sewage sludge, energy crops, and some lignocellulosic biomass, produces bio-oil with high nitrogen (N) content, sometimes as high as 10 wt% or even higher. Major nitrogenous compounds in bio-oil include amines/amides, N-containing heterocycles, and nitriles. Such bio-oil cannot be used as fuel directly since the high N content will induce massive emission of nitrogen oxides during combustion. The present review comprehensively summarized the effects of biomass compositions (i.e., elemental, biochemical, and mineral compositions) and pyrolysis parameters (i.e., temperature, heating rate, atmosphere, bio-oil collection/fractionation methods, and catalysts) on the contents of N and the N-containing chemical components in bio-oil. The migration and transformation mechanisms of N during the pyrolysis of biomass were then discussed in detail. Finally, the research gaps were identified, followed by the proposals for future investigations to achieve the denitrogenation of bio-oil.


Assuntos
Microalgas , Pirólise , Biocombustíveis , Biomassa , Temperatura Alta , Nitrogênio
20.
J Environ Manage ; 270: 110824, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721299

RESUMO

Lignocellulosic biomass has been widely introduced into the liquefaction process of sewage sludge (SS) to improve the yield/quality of liquefaction products (bio-oil/biochar). This study explores the effect of adding rice straw (RS) and wood sawdust (WS) on the transport/conversion behaviors of heavy metals (HMs) during the liquefaction of SS. The introduction of lignocellulosic biomass, especially for RS, substantially lowers the total content of HMs in biochar. Most HMs (except Cd) still remain in biochar, although the introduction of RS/WS enhances the transport of HMs into bio-oils. The addition of RS/WS raises the percentage of HMs in active form, but the contents of bioavailable/leachable HMs are not considerably increased and even decreased in some cases, especially when RS is introduced. The overall pollution degree and environmental risk of HMs in biochars are lowered to a certain extent with the addition of RS/WS. Considering that the pollution degree and environmental risk of HMs present in biochars are still at a considerable level, appropriate pollution management measures should be undertaken when using such biochars for agricultural use.


Assuntos
Metais Pesados , Oryza , Biomassa , Carvão Vegetal , Esgotos , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA