Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; : e2402273, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682587

RESUMO

The fundamental logic states of 1 and 0 in Complementary Metal-Oxide-Semiconductor (CMOS) are essential for modern high-speed non-volatile solid-state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write-verify operation to ensure proper values within the 0/1 threshold ranges. In this work, a non-gradual switching memory with two distinct stable resistance levels is introduced, enabled by the asymmetric vertical structure of monolayer vacancy-induced oxidized Ti3C2Tx MXene for efficient carrier trapping and releasing. This non-cumulative resistance effect allows non-volatile memories to attain valid 0/1 logic levels through direct reprogramming, eliminating the need for a write-verify operation. The device exhibits superior performance characteristics, including short write/erase times (100 ns), a large switching ratio (≈3 × 104), long cyclic endurance (>104 cycles), extended retention (>4 × 106 s), and highly resistive stability (>104 continuous write operations). These findings present promising avenues for next-generation resistive memories, offering faster programming speed, exceptional write performance, and streamlined algorithms.

2.
ACS Appl Mater Interfaces ; 16(9): 12073-12084, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381527

RESUMO

Memristors can be used to mimic synaptic behavior in artificial neural networks, which makes them a key component in neuromorphic computing and holds promise for advancing the field. In this study, a memory artificial synaptic device based on ZnO-BaTiO3 (ZnO-BTO) vertically aligned nanocomposite thin films was prepared. The vertical interface between the two phases can be used as a conduit for oxygen vacancy (OV) accumulation and a channel for OV movement, which greatly optimizes the resistive switching performance of the device and has the potential for multistage storage. By applying different pulse sequences to the device, the conductance of the device is adjusted from multiple angles, and a variety of synaptic functions are simulated, such as paired-pulse facilitation, spike-timing-dependent plasticity, short-term plasticity to long-term plasticity (STP-LTP), and long-term potentiation/depression (LTP/LTD). Finally, we construct a neural network for image recognition, and the recognition accuracy can reach 91%. Our study demonstrates the feasibility of using composite thin-film vertical interface to regulate the resistive performance of memristors and its great potential in artificial synaptic simulation and neuromorphic computing.

3.
Bioelectrochemistry ; 150: 108345, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495704

RESUMO

Escherichia coli (E. coli) O157:H7 is one of the most important foodborne pathogens that causing severe foodborne diseases. With the development of foodborne diseases, there is an urgent need to seek new methods for early detection and monitoring of E. coli O157:H7. In this study, an electrochemical biosensor using phage EP01 as the recognition agent for detection of E. coli O157:H7 GXEC-N07 was established due to the specificity and high efficiency of phage EP01 in recognizing GXEC-N07. The biosensor was developed by depositing phages conjugated carboxyl graphene oxide (CFGO) and conductive carbon black (CB) onto the surface of glass carbon electrodes (GCEs). When detecting GXEC-N07 in the concentration range of 102 âˆ¼ 107 CFU/mL, the biosensor showed good linearity with a low detection limit of 11.8 CFU/mL, and the whole progress was in less than 30 min. The biosensor was successfully applied to the quantitative detection of GXEC-N07 in fresh milk and raw pork. The recovery values ranged from 60.8 % to 114.2 %. The biosensor provides a rapid, specific, low cost, and label free tool for E. coli O157:H7 GXEC-N07 detection. It is expected to become a powerful method for the detection of bacteria that threatening food safety and public health security.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Escherichia coli O157 , Doenças Transmitidas por Alimentos , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Técnicas Biossensoriais/métodos , Doenças Transmitidas por Alimentos/microbiologia
4.
iScience ; 25(10): 105041, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157575

RESUMO

Applying functional oxide thin films to flexible devices is of great interests within the rapid development of information technology. The challenges involve the contradiction between the high-temperature growth of high-quality oxide films and low melting point of the flexible supports. This review summarizes the developed methods to fabricate high-quality flexible oxide thin films with novel functionalities and applications. We start from the fabrication methods, e.g. direct growth on flexible buffered metal foils and layered mica, etching and transfer approach, as well as remote epitaxy technique. Then, various functionalities in flexible oxide films will be introduced, specifically, owing to the mechanical flexibility, some unique properties can be induced in flexible oxide films. Taking the advantages of the excellent physical properties, the flexible oxide films have been employed in various devices. Finally, future perspectives in this research field will be proposed to further develop this field from fabrication, functionality to device.

5.
Front Oncol ; 12: 842281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574402

RESUMO

Background: We conducted this study to evaluate if a reduced cumulative dose of induction and concurrent cisplatin conferred similar favorable outcomes when compared to trial NPC-0501. Methods: Newly diagnosed nasopharyngeal carcinoma (NPC) with stage III-IVA were prospectively recruited from January 2015 to September 2019. Induction chemotherapy (IC) consisted of cisplatin 80mg/m2 on day 1 and capecitabine 1000mg/m2 twice daily from day 1 to 14 every 3 weeks for 3 cycles followed by concurrent chemoradiotherapy (CCRT) with 2 cycles of cisplatin 100mg/m2 given every 3 weeks. Tumor response was evaluated according to RECIST v1.1. Acute and late adverse events (AEs) were graded with CTCAE v4.0 and Late Radiation Morbidity Scoring of the RTOG, respectively. Results: 135 patients were recruited. At 16 weeks after CCRT, all 130 patients who completed the entire course of radiotherapy (RT) had a complete response upon final assessment. With a median follow-up of 36.2 months, 22 treatment failures and 8 deaths were observed. The 3-year progression-free survival, overall survival, locoregional recurrence-free survival, and distant recurrence-free survival were 83.7%, 94.1%, 94.1%, and 85.9%, respectively. Our survival data outcomes were similar to those reported in the cisplatin and capecitabine (PX) induction arm of the 0501 trial. 103 patients (76.3%) reported acute grade 3-4 AEs. Two patients (1.5%) had late grade 3-4 complications, numerically fewer than those reported in the NPC-0501 trial. Conclusions: Induction PX and concurrent cisplatin with a reduced cumulative cisplatin dose yield survival outcomes comparable to those reported in the NPC-0501 trial with excellent tolerability. Therefore, a reduced cumulative dose of cisplatin is a promising treatment scheme for nasopharyngeal carcinoma.

6.
Adv Sci (Weinh) ; 9(22): e2201443, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35619285

RESUMO

2D materials-based nanoelectromechanical resonant systems with high sensitivity can precisely trace quantities of ultra-small mass molecules and therefore are broadly applied in biological analysis, chemical sensing, and physical detection. However, conventional optical and capacitive transconductance schemes struggle to measure high-order mode resonant effectively, which is the scientific key to further achieving higher accuracy and lower noise. In the present study, the different vibrations of monolayer Ti3 C2 Tx MXene piezo-resonators are investigated, and achieve a high-order f2,3 resonant mode with a ≈234.59 ± 0.05 MHz characteristic peak due to the special piezoelectrical structure of the Ti3 C2 Tx MXene layer. The effective measurements of signals have a low thermomechanical motion spectral density (9.66 ± 0.01  fmHz$\frac{{fm}}{{\sqrt {Hz} }}$ ) and an extensive dynamic range (118.49 ± 0.42 dB) with sub-zeptograms resolution (0.22 ± 0.01 zg) at 300 K temperature and 1 atm. Furthermore, the functional groups of the Ti3 C2 Tx MXene with unique adsorption properties enable a high working range ratio of ≈3100 and excellent repeatability. This Ti3 C2 Tx MXene device demonstrates encouraging performance advancements over other nano-resonators and will lead the related engineering applications including high-sensitivity mass detectors.


Assuntos
Adsorção , Temperatura
7.
Nanoscale Adv ; 5(1): 247-254, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605792

RESUMO

Magnetoacoustic waves generated in piezoelectric and ferromagnetic coupled nanocomposite films through magnetically driven surface acoustic waves present great promise of loss-less data transmission. In this work, ferromagnetic metals of Ni, Co and Co x Ni1-x are coupled with a piezoelectric ZnO matrix in a vertically-aligned nanocomposite (VAN) thin film platform. Oxidation was found to occur in the cases of ZnO-Co, forming a ZnO-CoO VAN, while only very minor oxidation was found in the case of ZnO-Ni VAN. An alloy approach of Co x Ni1-x has been explored to overcome the oxidation during growth. Detailed microstructural analysis reveals limited oxidation of both metals and distinct phase separation between the ZnO and the metallic phases. Highly anisotropic properties including anisotropic ferromagnetic properties and hyperbolic dielectric functions are found in the ZnO-Ni and ZnO-Co x Ni1-x systems. The magnetic metal-ZnO-based hybrid metamaterials in this report present great potential in coupling of optical, magnetic, and piezoelectric properties towards future magnetoacoustic wave devices.

8.
ACS Appl Mater Interfaces ; 13(42): 50141-50148, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644494

RESUMO

Exchange bias (EB) presents the interfacial coupling between ferromagnetic (FM) and antiferromagnetic (AFM) phases, which could be applied for high-density data storage and magnetic recording. In thin films, the EB effect could be realized in either a FM/AFM multilayer structure or a FM/AFM vertically aligned nanocomposite (VAN) form, which allows the interfacial coupling tuning along the horizontal or perpendicular directions, respectively. Here, to combine the schemes of multilayer and VAN structures, a new 3D nanocomposite has been designed, which is La0.7Sr0.3MnO3 (LSMO)/NiO VAN layers with inserted LSMO or NiO layers. Such a 3D nanocomposite structure provides a great platform to tailor the EB effect along both horizontal and perpendicular directions. Specifically, the sample with a NiO interlayer exhibits the highest EB field (HEB) of 350 Oe and 475 Oe under in-plane and out-of-plane field, respectively. Furthermore, the HEB value and Curie temperature (Tc) can be tuned by different 3D nanostructures. This work demonstrates the double EB modulation with the designed 3D nanostructures as a new route toward advanced magnetic data storage and spintronic devices.

9.
ACS Appl Mater Interfaces ; 13(21): 24887-24895, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34002602

RESUMO

Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO.. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni-O orbital hybridization, which triggers the local electron-electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.

10.
ACS Appl Mater Interfaces ; 13(13): 15525-15535, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769027

RESUMO

The development of flexible and transparent electromagnetic interference (EMI) shielding materials with excellent comprehensive properties is urgently demanded as visual windows and display devices in aeronautic, industry, medical, and research facilities. However, the method of how to obtain highly efficient and reliable transparent EMI shielding devices is still facing lots of obstacles. Here, a high-performance silver nanotube (AgNT) network with stable and integrated interconnects is prepared by physical depositing technology, based on a uniform and large-scale nanofiber skeleton. This unique structure enables the AgNT network to achieve one order higher conductivity (∼1.0 Ω/sq at >90% transmittance) than previous research studies and keeps <10% variation with random deformations (>5000 times). Moreover, the manufactured AgNT shielding film with a thickness of less than 1 mm can be easily transferred to arbitrary surfaces as a transparent and flexible EMI shielding film at commercial ∼35 dB EMI shielding effectiveness, with large-scale, low-cost, and simple preparation processes. These excellent properties endow the AgNT shielding film to achieve great potential for future flexible and transparent scenarios.

11.
Nano Lett ; 21(2): 1032-1039, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33405932

RESUMO

Searching for multifunctional materials with tunable magnetic and optical properties has been a critical task toward the implementation of future integrated optical devices. Vertically aligned nanocomposite (VAN) thin films provide a unique platform for multifunctional material designs. Here, a new metal-oxide VAN has been designed with plasmonic Au nanopillars embedded in a ferromagnetic La0.67Sr0.33MnO3 (LSMO) matrix. Such Au-LSMO nanocomposite presents intriguing plasmon resonance in the visible range and magnetic anisotropy property, which are functionalized by the Au and LSMO phase, respectively. Furthermore, the vertically aligned nanostructure of metal and dielectric oxide results in the hyperbolic property for near-field electromagnetic wave manipulation. Such optical and magnetic response could be further tailored by tuning the composition of Au and LSMO phases.

12.
Nanoscale Adv ; 3(4): 1121-1126, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133298

RESUMO

Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Herein, we deposited Ag-LiNbO3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into the LNO matrix by the co-deposition of Ag and LNO using a pulsed laser deposition (PLD) method. The density and size of Ag NPs were tailored by varying the Ag composition. Low-density and high-density Ag-LNO nanocomposite thin films were deposited and their optical properties, such as transmittance spectra, ellipsometry measurement, as well as angle-dependent and polarization-resolved reflectivity spectra, were explored. The Ag-LNO films show surface plasmon resonance (SPR) in the visible range, tunable optical constants and optical anisotropy, which are critical for photonic device applications.

13.
ACS Appl Mater Interfaces ; 12(35): 39920-39925, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805906

RESUMO

Flexible electronics integrating spintronics are of great potential in the areas of lightweight and flexible personal electronics. The integration of ferromagnetic and other functional oxides on flexible mica substrates is crucial for the proposed computer technology. In this work, we demonstrate the successful integration of a ferromagnetic-antiferromagnetic nanocomposite of La0.67Sr0.33MnO3 (LSMO)/NiO with unique perpendicular exchange bias properties on a flexible mica substrate. Utilization of multiple sets of buffer layers has been attempted to overcome the large mismatch between the film and the substrate and to achieve high-quality nanocomposite growth on mica. Exchange bias of ∼200 and ∼140 Oe for the applied magnetic field perpendicular and parallel to the film surface, respectively, has been achieved and attributed to the strongly coupled vertical ferromagnetic/antiferromagnetic interfaces. Such nanocomposite thin films exhibit excellent structural robustness and reliability under a cyclic bending test. This work demonstrates the enormous potential of integrating complex two-phase multifunctional oxides on mica for future flexible wearable personal devices.

14.
ACS Appl Mater Interfaces ; 12(37): 41991-41998, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812733

RESUMO

Thin-film resonators and scanning probe microscopies (SPM) are usually used on low-frequency mechanical systems at the nanoscale or larger. Generally, off-chip approaches are applied to detect mechanical vibrations in these systems, but these methods are not much appropriate for atomic-thin-layer devices with ultrahigh characteristic frequencies and ultrathin thickness. Primarily, those mechanical devices based on atomic-layers provide highly improved properties, which are inapproachable with conventional nanoelectromechanical systems (NEMS). In this report, the assembly and manipulation of single-atomic-layer piezo-resonators as mass sensors with eigen mechanical resonances up to gigahertz are described. The resonators utilize electronic vibration transducers based on piezo-electric polarization charges, allowing direct and optimal atomic-layer sensor exports. This direct detection affords practical applications with the previously inapproachable Q-factor and sensitivity rather than photoelectric conversion. Exploration of a 2406.26 MHz membrane vibration is indicated with a thermo-noise-limited mass resolution of ∼3.0 zg (10-21 g) in room temperature. The fabricated mass sensors are contactless and fast and can afford a method for precision measurements of the ultrasmall mass with two-dimentional materials.

15.
ACS Appl Mater Interfaces ; 12(20): 23076-23083, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32340437

RESUMO

Tetragonal tungsten bronze (TTB) materials are one of the most promising classes of materials for ferroelectric and nonlinear optical devices, owing to their very unique noncentrosymmetric crystal structure. In this work, a new TTB phase of LiNb6Ba5Ti4O30 (LNBTO) has been discovered and studied. A small amount of a secondary phase, LiTiO2 (LTO), has been incorporated as nanopillars that are vertically embedded in the LNBTO matrix. The new multifunctional nanocomposite thin film presents exotic highly anisotropic microstructure and properties, e.g., strong ferroelectricity, high optical transparency, anisotropic dielectric function, and strong optical nonlinearity evidenced by the second harmonic generation results. An optical waveguide structure based on the stacks of α-Si on SiO2/LNBTO-LTO has been fabricated, exhibiting low optical dispersion with an optimized evanescent field staying in the LNBTO-LTO active layer. This work highlights the combination of new TTB material designs and vertically aligned nanocomposite structures for further enhanced anisotropic and nonlinear properties.

16.
RSC Adv ; 10(66): 40229-40233, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520854

RESUMO

Sm-doped BiFeO3 (Bi0.85Sm0.15FeO3, or BSFO) thin films were fabricated on (001) SrTiO3(STO) substrates by pulsed laser deposition (PLD) over a range of deposition temperatures (600 °C, 640 °C and 670 °C). Detailed analysis of their microstructure via X-ray diffraction (XRD) and transmission electron microscopy (TEM) shows the deposition temperature dependence of ferroelectric (FE) and antiferroelectric (AFE) phase formation in BSFO. The Sm dopants are clearly detected by high-resolution scanning transmission electron microscopy (HR-STEM) and prove effective in controlling the ferroelectric properties of BSFO. The BSFO (T dep = 670 °C) presents larger remnant polarization (Pr) than the other two BSFO (T dep = 600 °C, 640 °C) and pure BiFeO3 (BFO) thin films. This study paves a simple way for enhancing the ferroelectric properties of BSFO via deposition temperature and further promoting BFO practical applications.

17.
ACS Appl Mater Interfaces ; 11(29): 26261-26267, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31283165

RESUMO

Single-phase multiferroics are scarce because of the fact that the coexistence of magnetism (spin order) and ferroelectricity (electric dipole order) in a single-phase material may be limited. Taking advantage of the nanocomposite design, combining a ferroelectric phase and a ferromagnetic phase presents enormous opportunities in multiferroic material exploration. In this work, a new 2D-layered framework of Bi2W1-xMnxO6-BiMnO3 (BWMO-BMO) in the nanocomposite thin-film form has been demonstrated and shows obvious room-temperature multiferroic properties, that is, ferroelectric and ferromagnetic at room temperature. The BMO phase forms a unique tilted domain structure in the BWMO matrix, and both phases are of excellent epitaxial quality. The ferroelectric response originates from the layered Aurivillius phase of the BWMO matrix, and the ferromagnetic properties mainly arise from the BMO nanodomains. Moreover, the band gap of the BWMO-BMO nanocomposite is effectively tuned to 3.10 eV from its original 3.75 eV of BWO. This study demonstrates a new design of nanocomposite using layered oxides toward future multifunctional oxides for nanoscale devices.

19.
Nanoscale Adv ; 1(3): 1045-1054, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133204

RESUMO

Tunable plasmonic structure at the nanometer scale presents enormous opportunities for various photonic devices. In this work, we present a hybrid plasmonic thin film platform: i.e., a vertically aligned Au nanopillar array grown inside a TiN matrix with controllable Au pillar density. Compared to single phase plasmonic materials, the presented tunable hybrid nanostructures attain optical flexibility including gradual tuning and anisotropic behavior of the complex dielectric function, resonant peak shifting and change of surface plasmon resonances (SPRs) in the UV-visible range, all confirmed by numerical simulations. The tailorable hybrid platform also demonstrates enhanced surface plasmon Raman response for Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements, and presents great potentials as designable hybrid platforms for tunable optical-based chemical sensing applications.

20.
Nanoscale Adv ; 1(11): 4450-4458, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134413

RESUMO

Ferromagnetic nanostructures with strong anisotropic properties are highly desired for their potential integration into spintronic devices. Several anisotropic candidates, such as CoFeB and Fe-Pt, have been previously proposed, but many of them have limitations such as patterning issues or thickness restrictions. In this work, Co-BaZrO3 (Co-BZO) vertically aligned nanocomposite (VAN) films with tunable magnetic anisotropy and coercive field strength have been demonstrated to address this need. Such tunable magnetic properties are achieved through tuning the thickness of the Co-BZO VAN structures and the aspect ratio of the Co nanostructures, which can be easily integrated into spintronic devices. As a demonstration, we have integrated the Co-BZO VAN nanostructure into tunnel junction devices, which demonstrated resistive switching alluding to Co-BZO's immense potential for future spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA