Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mar Drugs ; 22(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38786602

RESUMO

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Assuntos
Ciclo-Oxigenase 2 , Óxido Nítrico Sintase Tipo II , Osteoartrite , Polissacarídeos , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/induzido quimicamente , Animais , Ciclo-Oxigenase 2/metabolismo , Polissacarídeos/farmacologia , Masculino , Camundongos , Modelos Animais de Doenças , Ácido Iodoacético , Estresse Oxidativo/efeitos dos fármacos , Humanos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Iodoacetatos
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612715

RESUMO

Breast cancer (BC) represents one of the most prevalent malignant threats to women globally. Tumor relapse or metastasis is facilitated by BC stemness progression, contributing to tumorigenicity. Therefore, comprehending the characteristics of stemness progression and the underlying molecular mechanisms is pivotal for BC advancement. Hinokitiol (ß-thujaplicin), a tropolone-related compound abundant in the heartwood of cupressaceous plants, exhibits antimicrobial activity. In our study, we employed three BC cell lines (MDA-MB-231, MCF-7, and T47D) to assess the expression of stemness-, apoptosis-, and autophagy-related proteins. Hinokitiol significantly reduced the viability of cancer cells in a dose-dependent manner. Furthermore, we observed that hinokitiol enhances apoptosis by increasing the levels of cleaved poly-ADP-ribose polymerase (PARP) and phospho-p53. It also induces dysfunction in autophagy through the upregulation of LC3B and p62 protein expression. Additionally, hinokitiol significantly suppressed the number and diameter of cancer cell line spheres by reducing the expression of cluster of differentiation44 (CD44) and key transcription factors. These findings underscore hinokitiol's potential as a therapeutic agent for breast cancer, particularly as a stemness-progression inhibitor. Further research and clinical studies are warranted to explore the full therapeutic potential of hinokitiol in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Monoterpenos , Tropolona , Tropolona/análogos & derivados , Humanos , Feminino , Tropolona/farmacologia , Neoplasias da Mama/tratamento farmacológico , Recidiva Local de Neoplasia , Apoptose , Autofagia , Células MCF-7 , Receptores de Hialuronatos , Fatores de Transcrição SOXB1
3.
Ecotoxicol Environ Saf ; 271: 115978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262097

RESUMO

3-Monochloropropane-1, 2-diol (3-MCPD), a food-borne contaminant, is widely regarded as the primary cause of male infertility. At present, identifying a method to improve/reduce the male reproductive toxicity caused by 3-MCPD is important. In our study, we explored the potential application of resveratrol (RSV) in mitigating the adverse effects of 3-MCPD. Using 7-week-old Sprague-Dawley (SD) rats as animal models, we investigated the impacts and underlying mechanisms of 3-MCPD and RSV on reproductive function. The administration of 3-MCPD led to significant reductions in testicular and epididymal weights, as well as disruptions in spermatogenesis and histological abnormalities. However, co-treatment with RSV and 3-MCPD mitigated these adverse effects. In vitro study, RSV exhibited the ability to reverse the decline in Leydig and Sertoli cell populations inflicted by 3-MCPD treatment. Mechanistically, RSV reduced endoplasmic reticulum stress (PARP), inflammasome activation (NLRP3), and autophagy-mediated lysosome dysfunction (p62 and LC3BII) induced by 3-MCPD. In addition, 3-MCPD treatment increased the expression level of steroidogenesis-related proteins, steroidogenic acute regulatory (StAR) and CYP11A1, but RSV normalized StAR expression. Moreover, 3-MCPD-induced pro-inflammatory responses were counteracted by RSV treatment, with the cytokine reduction and modulation of CD206 expression, a marker of macrophage activation. These findings indicate that RSV attenuates 3-MCPD-induced reproductive toxicity, highlighting its application potential as an adjuvant agent for male reproductive health.


Assuntos
alfa-Cloridrina , Ratos , Animais , Masculino , Ratos Sprague-Dawley , alfa-Cloridrina/toxicidade , Resveratrol/farmacologia , Testículo , Epididimo
4.
Biomed Pharmacother ; 170: 116026, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128179

RESUMO

Atopic dermatitis (AD) poses a significant global health challenge, characterized by dysregulated inflammation and apoptotic processes. This study explores the therapeutic efficacy of hinokitiol, employing a comprehensive in vivo and in vitro approach. Assessment of inflammation-related markers in the animal model included observation of physical appearance, Western blotting, ELISA, and H&E staining. Additionally, the cell culture model enabled the evaluation of apoptosis and ROS levels using MTT assay, crystal violet staining, Western blot, and DCFDA assays. The results revealed hinokitiol's proficiency in ameliorating ear and skin morphology in the DNCB-induced AD model, mediated through the TLR4/MyD88 pathway. Notably, hinokitiol intervention led to a reduction in both M1 and M2 macrophage phenotypes. In vitro investigations demonstrated hinokitiol's ability to enhance cell viability and morphology under TNF-α and IFN-γ induction. Mechanistically, hinokitiol exhibited regulatory effects on apoptosis-related proteins, including Bax, Cytochrome c, Caspase-3, and PARP, thereby averting cellular damage. These findings suggest that hinokitiol is a promising natural compound with significant potential for alleviating inflammation and apoptosis in AD, indicating potential avenues for future therapeutic developments.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/metabolismo , Receptor 4 Toll-Like , Pele , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
5.
J Inflamm Res ; 16: 4867-4884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908202

RESUMO

Purpose: Coronavirus disease 2019 (COVID-19) poses a global health challenge with widespread transmission. Growing concerns about vaccine side effects, diminishing efficacy, and religious-based hesitancy highlight the need for alternative pharmacological approaches. Our study investigates the impact of the ethanol extract of Antrodia cinnamomea (AC), a native medicinal fungus from Taiwan, on COVID-19 in both in vitro and in vivo contexts. Methods: We measured the mRNA and protein levels of angiotensin-converting enzyme-2 (ACE2) in human lung cells using real-time reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Additionally, we determined the enzymatic activity of ACE2 using the fluorogenic peptide substrate Mca-YVADAPK(Dnp)-OH. To assess the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we used SARS-CoV-2 pseudovirus infections in human embryonic kidney 293T cells expressing ACE2 to measure infection rates. Furthermore, we evaluated the in vivo efficacy of AC in mitigating COVID-19 by conducting experiments on hamsters infected with the Delta variant of SARS-CoV-2. Results: AC effectively decreased ACE2 mRNA and protein levels, a critical host receptor for the SARS-CoV-2 spike protein, in human lung cells. It also prevented the spike protein from binding to human lung cells. Dehydrosulphurenic acid, an isolate from AC, directly inhibited ACE2 protease activity with an inhibitory constant of 1.53 µM. In vitro experiments showed that both AC and dehydrosulphurenic acid significantly reduced the infection rate of SARS-CoV-2 pseudovirus. In hamsters infected with the Delta variant of SARS-CoV-2, oral administration of AC reduced body weight loss and improved lung injury. Notably, AC also inhibited IL-1ß expression in both macrophages and the lung tissues of SARS-CoV-2-infected hamsters. Conclusion: AC shows potential as a nutraceutical for reducing the risk of SARS-CoV-2 infection by disrupting the interaction between ACE2 and the SARS-CoV-2 spike protein, and for preventing COVID-19-associated lung inflammation.

6.
Biomed Pharmacother ; 167: 115533, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748406

RESUMO

Overexpression of the hypoxia-induced transmembrane enzyme carbonic anhydrase IX (CA9) has been associated with poor prognosis and chemoresistance in aggressive breast cancer. This study aimed to investigate the involvement of CA9 in the anti-tumor activity of para-toluenesulfonamide (PTS) and elucidate its mechanism of action against breast cancer both in vitro and in vivo. MCF-7 and MDA-MB-231 breast cancer cells were treated with PTS or subjected to hypoxic conditions using cobalt chloride (CoCl2), with acetazolamide serving as a positive control. Additionally, 4T1 breast cancer cell allograft mice were co-treated with PTS and α-programmed cell death 1 (αPD-1) monoclonal antibody for one month. The results demonstrated that PTS effectively reduced cell viability and reversed migration ability in MCF-7 and MDA-MB-231 cells under CoCl2-induced hypoxia. Furthermore, PTS upregulated the expression of apoptosis-related proteins and downregulated CA9, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) proteins, possibly through modulation of p38 MAPK and ERK1/2 phosphorylated proteins. In the animal model, PTS100 inhibited tumor growth and lung metastasis in mammary tumor allograft mice, exhibiting synergistic effects when combined with αPD-1 therapy. Collectively, our findings suggest that PTS inhibits breast cancer growth and metastasis through the p38 MAPK/ERK1/2 pathway. Moreover, PTS may have the potential to prevent the development of resistance to αPD-1 therapy in breast cancer.


Assuntos
Neoplasias da Mama , Anidrases Carbônicas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/farmacologia , Sobrevivência Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos de Neoplasias/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/patologia
7.
Biomed Pharmacother ; 166: 115327, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619480

RESUMO

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects women of reproductive age, characterized by androgen-induced oxidative stress leading to several metabolic disorders. In this study, we investigated the potential therapeutic effect of caffeic acid on PCOS and its underlying molecular mechanism. We used a human ovarian granulosa cell line (KGN cells) induced by hydrogen peroxide (H2O2) to examine how caffeic acid influences the protein expression of oxidative stress-induced apoptosis-related markers. Our results indicate that caffeic acid significantly inhibits intracellular reactive oxygen species (ROS) generation and safeguards KGN cells against oxidative stress. For the in vivo aspect of our study, female Sprague-Dawley (SD) rats were utilized to induce the PCOS model using dehydroepiandrosterone (DHEA). Caffeic acid was then administered to the rats for a duration of 6 weeks. The outcomes revealed that caffeic acid effectively improved irregular estrous cycles, fasting blood glucose levels, liver function, and lipid profiles in DHEA-induced PCOS rats. Additionally, it mitigated hyperandrogenism, enhanced steroidogenesis enzyme expression, and modulated apoptosis-related protein expression. Our findings strongly suggest that caffeic acid holds promising potential in reducing oxidative stress-induced damage and ameliorating PCOS-related complications by modulating ER stress.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Peróxido de Hidrogênio , Apoptose , Estresse Oxidativo , Desidroepiandrosterona/farmacologia
8.
Biomed Pharmacother ; 166: 115334, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634475

RESUMO

Asthma is a chronic inflammatory disease that has been associated with insufficient vegetable intake. Allyl Isothiocyanate (AITC) is a natural isothiocyanate found in cruciferous plants with anti-inflammatory and antioxidant abilities. Our study aimed to investigate the potential effect of AITC on tracheal constriction in a house dust mite (HDM)-induced asthma animal model, and explore the underlying mechanisms. To investigate the effects of AITC on HDM-induced allergic asthma model, established by intranasally administering extracts of HDM and AITC or DEX was given orally for four weeks. Flexivent SCIREQ, H&E staining, ELISA were employed to evaluate the lung function and the cytokine secretion. Possible mechanisms were determined by Western blot. Rat tracheae contraction was measured by Labscribe. We utilized lung epithelial cells (BEAS-2B) to assess the adhesion response to the combination of inflammatory factors TNF-α and IL-4. The results of the study showed that AITC significantly reduced tracheal constriction in ex vivo experiments and improved lung function in in vivo experiments compared to HDM-induced mice. Additionally, AITC decreased cytokine secretion, inflammatory cell infiltration in the lung, and constriction-related proteins expression in both lung and tracheae. Moreover, AITC increased tight junction-related protein expression in lung tissues. In vitro experiments showed that AITC had a protective effect through TRPA1 channel without affecting cell viability. Our results demonstrate that AITC has potential anti-asthma effects in HDM-induced asthma models by alleviating airway inflammation and airway constriction through increasing tight junction-related protein expression and suppressing Ca2+ signaling. These findings suggest that AITC may be a beneficial adjuvant therapy in asthma treatment.


Assuntos
Asma , Pyroglyphidae , Ratos , Animais , Camundongos , Regulação para Cima , Constrição , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Asma/tratamento farmacológico , Constrição Patológica , Inflamação/tratamento farmacológico
9.
Nutrients ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447156

RESUMO

Dysmenorrhea causes pain and inconvenience during menstruation. In addition to medication, natural compounds are widely used to relieve various types of pain. In this study, we aimed to assess the effects of vitamin D (vit. D) supplementation in relieving the symptoms of primary dysmenorrhea. A comprehensive systematic database search of randomized controlled trials (RCTs) was performed. Oral forms of vit. D supplementation were included and compared with a placebo or standard care. The degree of dysmenorrhea pain was measured with a visual analogue scale or numerical rating scale. Outcomes were compared using the standardized mean difference (SMD) and 95% confidence intervals (CIs) in a meta-analysis. RCTs were assessed using the Cochrane risk-of-bias v2 (RoB 2) tool. The meta-analysis included 8 randomized controlled trials involving 695 participants. The results of the quantitative analysis showed a significantly lower degree of pain in the vit. D versus placebo in those with dysmenorrhea (SMD: -1.404, 95% CI: -2.078 to -0.731). The results of subgroup analysis revealed that pain lessened when the average weekly dose of vit. D was over 50,000 IU, in which dysmenorrhea was relieved regardless of whether vit. D was administered for more or less than 70 days and in any dose interval. The results revealed that vit. D treatment substantially reduced the pain level in the primary dysmenorrhea population. We concluded that vit. D supplementation is an alternative treatment for relieving the pain symptoms of dysmenorrhea.


Assuntos
Dismenorreia , Menstruação , Feminino , Humanos , Dismenorreia/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitamina D , Suplementos Nutricionais
10.
Cells ; 12(8)2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190026

RESUMO

Uterine fibroids (UFs) are the most important benign neoplastic threat to women's health worldwide, with a prevalence of up to 80% in premenopausal women, and can cause heavy menstrual bleeding, pain, and infertility. Progesterone signaling plays a crucial role in the development and growth of UFs. Progesterone promotes the proliferation of UF cells by activating several signaling pathways genetically and epigenetically. In this review article, we reviewed the literature covering progesterone signaling in UF pathogenesis and further discussed the therapeutic potential of compounds that modulate progesterone signaling against UFs, including selective progesterone receptor modulator (SPRM) drugs and natural compounds. Further studies are needed to confirm the safety of SPRMs as well as their exact molecular mechanisms. The consumption of natural compounds as a potential anti-UFs treatment seems promising, since these compounds can be used on a long-term basis-especially for women pursuing concurrent pregnancy, unlike SPRMs. However, further clinical trials are needed to confirm their effectiveness.


Assuntos
Leiomioma , Neoplasias Uterinas , Gravidez , Feminino , Humanos , Progesterona/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/patologia , Receptores de Progesterona/metabolismo , Leiomioma/tratamento farmacológico , Leiomioma/patologia , Esteroides
11.
Biomedicines ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830834

RESUMO

Obesity is a cancer progression risk factor; excessive adipocytes increase adipokine secretion. Visfatin, a novel adipokine highly expressed in cancer patients, is related to breast cancer risk. The modulation of nicotinamide adenine dinucleotide (NAD+) metabolism and the induction of a tumorigenic environment plays a vital role in cancer progression. Among cancer cell types, cancer stem-like cells (CSCs) with self-renewal and chemotherapy-resistance abilities could modulate tumor progression and cancer recurrence ability. In this study, we focused on visfatin's modulation effect on stemness-related properties using the high-malignancy breast cancer cell line MDA-MB-231 in in vitro and in vivo studies. Visfatin treatment significantly increased both the sphere number and sphere diameter and increased the protein expression of NANOG homeobox (NANOG), sex-determining region Y-box 2 (SOX2), and octamer-binding transcription factor 4 (OCT4), as well as SIRT1 protein levels. The serum angiogenesis marker VEGF and extracellular nicotinamide phosphoribosyl transferase (NAMPT, visfatin) were induced after visfatin treatment, increasing the stemness and angiogenesis environment, which were significantly reduced by the visfatin inhibitor FK866. Our results demonstrate that the visfatin-activated SIRT-SOX2 axis promotes triple-negative breast cancer stemness and enriches the tumorigenic microenvironment.

12.
J Cachexia Sarcopenia Muscle ; 14(1): 182-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36401337

RESUMO

BACKGROUND: Cisplatin (CP) is a widely used chemotherapeutic drug with subsequent adverse effects on different organs and tissues including skeletal muscle loss and atrophy as the most common clinical symptoms. The molecular mechanism of cisplatin-induced muscle atrophy is not clearly understood. However, recent significant advances indicate that it is related to an imbalance in both the protein status and apoptosis. Capsaicin (CAP) is one of the major ingredients in chilli peppers. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation with particular therapeutic potential in muscle atrophy. However, the mechanisms underlying its protective effects against cisplatin-induced muscle loss and atrophy remain largely unknown. This study aims to investigate capsaicin's beneficial effects on cisplatin-induced muscle loss and atrophy in vitro and in vivo. METHODS: The anti-muscle-atrophic effect of capsaicin on cisplatin-induced muscle loss was investigated using in vivo and in vitro studies. By using the pretreatment model, pretreated capsaicin for 24 h and treated with cisplatin for 48 h, we utilized a C2 C12 myotube formation model where cell viability analysis, immunofluorescence, and protein expression were measured to investigate the effect of capsaicin in hampering cisplatin-induced muscle atrophy. C57BL/6 mice were administered capsaicin (10, 40 mg/kg BW) as a pretreatment for 5 weeks and cisplatin (3 mg/kg BW) for seven consecutively days to assess muscle atrophy in an animal model for protein and oxidative stress examination, and the grip strength was tested to evaluate the muscle strength. RESULTS: Our study results indicated that cisplatin caused lower cell viability and showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in the myotube diameter, repression of Akt, and mTOR protein expression. However, pretreatment with capsaicin could ameliorate cisplatin-induced muscle atrophy by up-regulating the protein synthesis in skeletal muscle as well as down-regulating the markers of protein degradation. Additionally, capsaicin was able to downregulate the protein expression of apoptosis-related markers, activated TRPV1 and autophagy progress modulation and the recovery of lysosome function. In vivo, capsaicin could relieve oxidative stress and cytokine secretion while modulating autophagy-related lysosome fusion, improving grip strength, and alleviating cisplatin-induced body weight loss and gastrocnemius atrophy. CONCLUSIONS: These findings suggest that capsaicin can restore cisplatin-induced imbalance between protein synthesis and protein degradation pathways and it may have protective effects against cisplatin-induced muscle atrophy.


Assuntos
Capsaicina , Cisplatino , Músculo Esquelético , Atrofia Muscular , Animais , Camundongos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Cisplatino/efeitos adversos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo
13.
Nanomaterials (Basel) ; 11(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200422

RESUMO

Hydrolysis of protein by proteases produces small molecular weights (MWs) peptides as nanomaterials that are easily absorbed. This study investigated the physicochemical properties and antioxidant activity of three plant protein isolates (PIs) including soy, wheat and pea after multi-enzyme hydrolysis. The MWs, particle size and microstructure of PI hydrolysate (PIH) were determined by SDS-PAGE and MALDI-TOF-MS mass spectrometry, dynamic light scattering and transmission electron microscopy, respectively. Cell viability was determined in vitro using a mouse skeletal muscle cell line (C2C12) and crystal violet staining. The MWs and particle sizes of the three plant PIs were reduced after hydrolysis by three proteases (bromelain, Neutrase and Flavourzyme). The MWs of soy, wheat and pea PIH were 103.5-383.0 Da, 103.5-1146.5 Da and 103.1-1937.7 Da, respectively, and particle size distributions of 1.9-2.0 nm, 3.2-5.6 nm and 1.3-3.2 nm, respectively. All three plant PIHs appeared as aggregated nanoparticles. Soy PIH (100 µg/mL) provided better protection against H2O2-induced oxidative damage to C2C12 than wheat or pea PIH. In summary, soy PIH had the best antioxidant activity, and particle size than wheat PIH and pea PIH. Therefore, soy PIH might be a dietary supplement for healthy diet and medical applications.

14.
Nutrients ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008039

RESUMO

Primary dysmenorrhea is a common occurrence in adolescent women and is a type of chronic inflammation. Dysmenorrhea is due to an increase in oxidative stress, which increases cyclooxygenase-2 (COX-2) expression, increases the concentration of prostaglandin F2α (PGF2α), and increases the calcium concentration in uterine smooth muscle, causing excessive uterine contractions and pain. The polyphenolic compound oleocanthal (OC) in extra virgin olive oil (EVOO) has been shown to have an anti-inflammatory and antioxidant effect. This study aimed to investigate the inhibitory effect of extra virgin olive oil and its active ingredient oleocanthal (OC) on prostaglandin-induced uterine hyper-contraction, its antioxidant ability, and related mechanisms. We used force-displacement transducers to calculate uterine contraction in an ex vivo study. To analyze the analgesic effect, in an in vivo study, we used an acetic acid/oxytocin-induced mice writhing model and determined uterus contraction-related signaling protein expression. The active compound OC inhibited calcium/PGF2α-induced uterine hyper-contraction. In the acetic acid and oxytocin-induced mice writhing model, the intervention of the EVOO acetonitrile layer extraction inhibited pain by inhibiting oxidative stress and the phosphorylation of the protein kinase C (PKC)/extracellular signal-regulated kinases (ERK)/ myosin light chain (MLC) signaling pathway. These findings supported the idea that EVOO and its active ingredient, OC, can effectively decrease oxidative stress and PGF2α-induced uterine hyper-contraction, representing a further treatment for dysmenorrhea.


Assuntos
Dor Abdominal/terapia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Azeite de Oliva/farmacologia , Contração Uterina/efeitos dos fármacos , Dor Abdominal/induzido quimicamente , Dor Abdominal/fisiopatologia , Aldeídos/farmacologia , Animais , Cálcio/metabolismo , Ciclo-Oxigenase 2/sangue , Monoterpenos Ciclopentânicos/farmacologia , Dinoprosta/sangue , Modelos Animais de Doenças , Dismenorreia/complicações , Dismenorreia/fisiopatologia , Feminino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ocitocina , Fenóis/farmacologia , Prostaglandinas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/fisiopatologia
15.
Molecules ; 25(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998236

RESUMO

This study investigated the physicochemical characteristics of potato protein isolate hydrolysate (PPIH) and its antioxidant activity. Potato protein isolate (PPI) was hydrolyzed into PPIH by the proteases bromelain, Neutrase, and Flavourzyme. Compared with PPI, the resulting PPIH had a lower molecular weight (MW, from 103.5 to 422.7 Da) and smaller particle size (<50 nm), as well as a higher solubility rate (>70%) under acidic conditions (pH 3-6). PPIH presented good solubility (73%) across the tested pH range of 3-6. As the pH was increased, the zeta potential of PPIH decreased from -7.4 to -21.6. Using the 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical-scavenging assay, we determined that the half-maximal effective concentration (EC50) values of ascorbic acid, PPIH, and PPI were 0.01, 0.89, and >2.33 mg/mL, respectively. Furthermore, PPIH (50 µg/mL) protected C2C12 cells from H2O2 oxidation significantly better than PPI (10.5% higher viability rate; p < 0.01). These findings demonstrated the possible use of PPIH as an antioxidant in medical applications.


Assuntos
Antioxidantes/farmacologia , Fenômenos Químicos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Solanum tuberosum/química , Ácidos/química , Animais , Benzotiazóis/química , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Camundongos , Tamanho da Partícula , Proteínas de Plantas/ultraestrutura , Hidrolisados de Proteína/ultraestrutura , Solubilidade , Eletricidade Estática , Ácidos Sulfônicos/química
16.
J Pineal Res ; 68(1): e12620, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710386

RESUMO

The circadian nature of melatonin has a protective effect on the progression of female reproductive cancers, including breast and ovarian cancers. However, the effect of melatonin on the growth of uterine leiomyoma is still unclear. In this study, we found that the growth of uterine leiomyoma ELT3 cells was reduced by treatment with melatonin. Treatment with melatonin increased the distribution of sub-G1 phase and increased DNA condensation in ELT3 cells. Melatonin-induced apoptosis and autophagy cell death progression were observed in ELT3 cells. Melatonin exerts a highly selective effect on primary normal human uterine smooth muscle (UtSMC) cells. The UtSMC cell cycle was arrested by melatonin treatment through up-regulation of p21, p27, and PTEN protein expression, but melatonin did not further promote apoptosis program activation. Melatonin reduced cell proliferation in ELT3 cells underlying the activation of melatonin MT1 and MT2 receptors, which in turn down-regulated the Akt-ERK1/2-NFκB signaling pathway. Melatonin reduced ELT3 tumor growth in both xenograft and orthotopic uterine tumor mice models. The extracellular matrix of the tumor was also reduced by melatonin treatment. Taken together, these results suggest that melatonin potentially plays a role in suppression of uterine leiomyoma growth.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leiomioma/metabolismo , Melatonina/farmacologia , Neoplasias Uterinas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Ratos , Útero/citologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Antioxidants (Basel) ; 8(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817697

RESUMO

Excessive growth of cancer cells is the main cause of cancer mortality. Therefore, discovering how to inhibit cancer growth is an important research topic. Recently, the newly discovered adipokine, known as nicotinamide phosphoribosyl transferase (NAMPT, visfatin), which has been associated with metabolic syndrome and obesity, has also been found to be a major cause of cancer proliferation. Therefore, inhibition of NAMPT and reduction of Nicotinamide adenine dinucleotide (NAD) synthesis is one strategy for cancer therapy. Cinnamaldehyde (CA), as an antioxidant and anticancer natural compound, may have the ability to inhibit visfatin. The breast cancer cell line and xenograft animal models were treated under different dosages of visfatin combined with CA and FK866 (a visfatin inhibitor) to test for cell toxicity, as well as inhibition of tumor-related proliferation of protein expression. In the breast cancer cell and the xenograft animal model, visfatin significantly increased proliferation-related protein expression, but combination with CA or FK866 significantly reduced visfatin-induced carcinogenic effects. For the first time, a natural compound inhibiting extracellular and intracellular NAMPT has been demonstrated. We hope that, in the future, this can be used as a potential anticancer compound and provide further directions for research.

18.
Cancers (Basel) ; 11(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394829

RESUMO

Uterine leiomyomas, also known as fibroids, are common and prevalent in women of reproductive age. In this study, the effect of Isoliquiritigenin (ISL), a licorice flavonoid, on the anti-proliferation of uterine leiomyoma was investigated. We found that the survival of uterine leiomyoma ELT3 cells and primary uterine smooth muscle (UtSMC) cells was reduced by treatment with ISL alone or with ISL plus estradiol (E2). Cell cycles were arrested through the reduction of G2/M- and S-phase populations in ELT3 and UtSMC cells, respectively. Furthermore, increased sub-G1 phase and nucleus condensation were observed in ELT3 cells but not in UtSMC cells. Co-treatment of ELT3 cells with E2 and ISL inhibited ERK1/2 activation, whereas p38 and c-Jun N-terminal kinase (JNK) activation was enhanced. Moreover, ISL-induced apoptosis and autophagy cell death in ELT3 cells were observed. Serum E2 and P4 levels were reduced in a E2-enhanced uterine myometrium hyperplasia mouse model by ISL treatment, which contributed to the downregulation of the expression of extracellular matrix (ECM) associated proteins and matrix metalloproteinase (MMPs). Taken together, these results showed that ISL exerted a higher effect on the inhibition of estrogen-induced uterine leiomyoma growth for both in vitro and in vivo ECM accumulation, demonstrating its potential as a new option for treatment of uterine leiomyoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA