Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Neurobiol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767837

RESUMO

Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO-). We recently developed a new ONOO--triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO-. ONOO- scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO- reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for developing multi-functional compounds to treat ischemic stroke.

2.
ACS Chem Neurosci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634698

RESUMO

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.

3.
Neural Regen Res ; 18(5): 1040-1045, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254990

RESUMO

Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue (cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury.

4.
Front Pharmacol ; 13: 908830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814200

RESUMO

Plant exosome-like nanoparticles (ELNs) have shown great potential in treating tumor and inflammatory diseases, but the neuroprotective effect of plant ELNs remains unknown. In the present study, we isolated and characterized novel ELNs from Momordica charantia (MC) and investigated their neuroprotective effects against cerebral ischemia-reperfusion injury. In the present study, MC-ELNs were isolated by ultracentrifugation and characterized. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and MC-ELN injection intravenously. The integrity of the blood-brain barrier (BBB) was examined by Evans blue staining and with the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and ZO-1. Neuronal apoptosis was evaluated by TUNEL and the expression of apoptotic proteins including Bcl2, Bax, and cleaved caspase 3. The major discoveries include: 1) Dil-labeled MC-ELNs were identified in the infarct area; 2) MC-ELN treatment significantly ameliorated BBB disruption, decreased infarct sizes, and reduced neurological deficit scores; 3) MC-ELN treatment obviously downregulated the expression of MMP-9 and upregulated the expression of ZO-1 and claudin-5. Small RNA-sequencing revealed that MC-ELN-derived miRNA5266 reduced MMP-9 expression. Furthermore, MC-ELN treatment significantly upregulated the AKT/GSK3ß signaling pathway and attenuated neuronal apoptosis in HT22 cells. Taken together, these findings indicate that MC-ELNs attenuate ischemia-reperfusion-induced damage to the BBB and inhibit neuronal apoptosis probably via the upregulation of the AKT/GSK3ß signaling pathway.

5.
Front Cardiovasc Med ; 9: 864188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509278

RESUMO

Thoracic radiotherapy patients have higher risks of developing radiation-induced heart disease (RIHD). Ionizing radiation generates excessive reactive oxygens species (ROS) causing oxidative stress, while Momordica. charantia and its extract have antioxidant activity. Plant-derived extracellular vesicles (EVs) is emerging as novel therapeutic agent. Therefore, we explored the protective effects of Momordica. charantia-derived EVs-like nanovesicles (MCELNs) against RIHD. Using density gradient centrifugation, we successfully isolated MCELNs with similar shape, size, and markers as EVs. Confocal imaging revealed that rat cardiomyocytes H9C2 cells internalized PKH67 labeled MCELNs time-dependently. In vitro assay identified that MCELNs promoted cell proliferation, suppressed cell apoptosis, and alleviated the DNA damage in irradiated (16 Gy, X-ray) H9C2 cells. Moreover, elevated mitochondria ROS in irradiated H9C2 cells were scavenged by MCELNs, protecting mitochondria function with re-balanced mitochondria membrane potential. Furthermore, the phosphorylation of ROS-related proteins was recovered with increased ratios of p-AKT/AKT and p-ERK/ERK in MCELNs treated irradiated H9C2 cells. Last, intraperitoneal administration of MCELNs mitigated myocardial injury and fibrosis in a thoracic radiation mice model. Our data demonstrated the potential protective effects of MCELNs against RIHD. The MCELNs shed light on preventive regime development for radiation-related toxicity.

6.
Biochem Biophys Res Commun ; 609: 84-92, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35421633

RESUMO

Autophagy is a double-edged sword that affects tumor progression by promoting cell survival or death depending on different living contexts. The concrete mechanism by which autophagy modulates the efficacy of radiotherapy for prostate cancer (PC) remains unclear. We exposed RM-1 PC cells to X-ray and explored the role of autophagy in radiation injury. Our results showed increased apoptosis and autophagy levels in RM-1 cells after radiation. Pharmacological inhibition of autophagy by chloroquine significantly mitigated radiation-induced apoptosis, while the enhancement of autophagy by rapamycin aggravated apoptosis. Sirt1, a member of sirtuin family, deacetylates various transcription factors to trigger cell survival in response to radiation injury. We found that radiation led to Sirt1 downregulation, which was reversed by the inhibition of autophagy. On the contrary, enhanced autophagy further diminished protein level of Sirt1. Notably, overexpression of Sirt1 by plasmid significantly alleviated radiation-induced apoptosis, but silenced Sirt1 by siRNA further induced apoptosis, indicating the radioprotective effect of Sirt1 on RM-1 cells. In summary, our findings suggested that autophagy-mediated Sirt1 downregulation might be a promising therapeutic target for PC.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Sirtuína 1/metabolismo , Animais , Apoptose , Autofagia , Regulação para Baixo , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Sirtuína 1/genética
7.
Front Cell Neurosci ; 16: 841544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308117

RESUMO

Blood-brain barrier (BBB) dysfunction causing edema and hemorrhagic transformation is one of the pathophysiological characteristics of stroke. Protection of BBB integrity has shown great potential in improving stroke outcome. Here, we assessed the efficacy of exosomes extracted from healthy rat serum in protection against ischemic stroke in vivo and in vitro. Exosomes were isolated by gradient centrifugation and ultracentrifugation and exosomes were characterized by transmission electron microscopy (TEM) and nanoparticle tracking video microscope. Exosomes were applied to middle cerebral artery occlusion (MCAO) rats or brain microvascular endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD) injury. Serum-derived exosomes were injected intravenously into adult male rats 2 h after transient MCAO. Infarct volume and gross cognitive function were assessed 24 h after reperfusion. Poststroke rats treated with serum-derived exosomes exhibited significantly reduced infarct volumes and enhanced neurological function. Apoptosis was assessed via terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining and the expression of B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3 24 h after injury. Our data showed that serum exosomes treatment strikingly decreased TUNEL+ cells in the striatum, enhanced the ratio of Bcl-2 to Bax, and inhibited cleaved caspase-3 production in MCAO rats and OGD/reoxygenation insulted bEnd.3 cells. Under the consistent treatment, the expression of microtubule-associated protein 1 light chain 3B-II (LC3B-II), LC3B-I, and Sequestosome-1 (SQSTM1)/p62 was detected by Western blotting. Autolysosomes were observed via TEM. We found that serum exosomes reversed the ratio of LC3B-II to LC3B-I, prevented SQSTM1/p62 degradation, autolysosome formation, and autophagic flux. Together, these results indicated that exosomes isolated from healthy serum provided neuroprotection against experimental stroke partially via inhibition of endothelial cell apoptosis and autophagy-mediated BBB breakdown. Intravenous serum-derived exosome treatment may, therefore, provide a novel clinical therapeutic strategy for ischemic stroke.

8.
BMC Infect Dis ; 19(1): 173, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782134

RESUMO

BACKGROUND: A novel method, termed loop-mediated isothermal amplification (LAMP), was developed by Notomi et al. (2000). Individually published results have been reported that this technology has been successfully applied to the detection of a variety of pathogens. However, the overall diagnostic accuracy of LAMP for Mycoplasma pneumoniae (MP) remains unclear. A meta-analysis was therefore performed to review the accuracy of LAMP for Mycoplasma pneumoniae. METHODS: Cochrane Library and PubMed were systematically searched and checked for studies using LAMP for detecting mycoplasma pneumoniae. We used PCR as a reference standard to evaluate the quality of the studies eligible for inclusion in the meta-analysis. Then, the data from the studies were extracted by two independent assessors. Meta-DiSc 1.4 software was utilized to test the heterogeneity of sensitivity (SEN), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnosis odds ratio (DOR). The pooled analysis results were plotted, and the summary receiver operating characteristic (SROC) curve was plotted by calculating the area under the curve (AUC). Generated pooled summary estimates (95% CIs) were calculated for the overall accuracy, and a bivariate meta-regression model was used for the meta-analysis. RESULTS: Seven studies with nine fourfold tables were included in this meta-analysis. The pooled SEN and SPE for diagnosing Mycoplasma pneumoniae were 0.90 (95% CI: 0.87-0.93) and 0.98 (95% CI: 0.96-0.99), respectively. The PLR was 31.25 (95% CI: 14.83-65.87), NLR 0.10 (95% CI: 0.05-0.22), DOR 399.32 (95% CI: 172.01-927.00), and AUC 0.9892. CONCLUSIONS: In conclusion, compared with PCR, LAMP is a valuable alternative method for Mycoplasma pneumoniae diagnosis in clinic with high sensitivity and specificity. However, more evidence is required to confirm that LAMP can fully replace other methods in the clinical diagnosis of MP.


Assuntos
Mycoplasma pneumoniae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia por Mycoplasma/microbiologia , Área Sob a Curva , Humanos , Razão de Chances , Pneumonia por Mycoplasma/diagnóstico , Curva ROC , Sensibilidade e Especificidade
9.
PLoS One ; 14(1): e0211501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30695072

RESUMO

Gliomas are the most common malignant tumors of the brain and are characteristic of severe migration and invasion. Glial cell line-derived neurotrophic factor (GDNF) promotes glioma development process. However, the regulatory mechanisms of promoting occurrence and development of glioma have not yet been clearly elucidated. In the present study, the mechanism by which GDNF promotes glioma cell migration and invasion through regulating the dispersion and location of the Golgi apparatus (GA) is described. Following GDNF treatment, a change in the volume and position of GA was observed. The stack area of the GA was enlarged and it was more concentrated near the nucleus. Golgin-160 and Golgi microtubule-associated protein 210 (GMAP210) were identified as target molecules regulating GA positioning. In the absence of either golgin-160 or GMAP210 using lentivirus, the migration and invasion of U251 cells were decreased, while it was increased following GDNF. It was also found that the GA was decreased in size and dispersed following golgin-160 or GMAP210 knockdown, as determined by GA green fluorescence assay. Once GDNF was added, the above phenomenon would be twisted, and the concentrated location and volume of the GA was restored. In combination, the present data suggested that the regulation of the position and size of the GA by golgin-160 and GMAP210 play an important role in U251 cell migration and invasion.


Assuntos
Autoantígenos/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Glioma/patologia , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Nucleares/metabolismo , Autoantígenos/genética , Proliferação de Células , Proteínas do Citoesqueleto , Glioma/genética , Glioma/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Proteínas da Matriz do Complexo de Golgi/antagonistas & inibidores , Proteínas da Matriz do Complexo de Golgi/genética , Humanos , Invasividade Neoplásica , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Células Tumorais Cultivadas , Cicatrização
10.
Biochem Biophys Res Commun ; 503(3): 1740-1746, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30122318

RESUMO

Decrease of chloride concentration contributes to cardiovascular diseases, however, whether decrease of chloride concentration is involved in platelet activation remains elusive. In the present study, we found that ACI patients had lower serum chloride which would be rescued after Aspirin administration. ADP induced chloride concentration reduction in platelets. Blockade of chloride channel prevented ADP-induced platelet adhesion, activation and aggregation, however, decreasing the extracellular chloride concentration promoted ADP-induced platelet adhesion and activation. Decrease of the extracellular chloride concentration facilitated the inactivation of Src family kinase Lyn, which was not involved in PI3K/Akt phosphorylation. Nevertheless, low chloride concentration promoted the production of platelet cytosol Gαi2 subunit. This subunit prevents AC from converting ATP into cAMP, which therefore, inhibited the phosphorylation of PKA to promote platelet activation. In conclusion, decreased intracellular chloride promotes ADP induced platelet activation through the Gαi2/cAMP/PKA pathway instead of the Lyn/PI3K/Akt signal pathway.


Assuntos
Difosfato de Adenosina/metabolismo , Cloretos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , AMP Cíclico/antagonistas & inibidores , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Cloretos/sangue , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/sangue , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases da Família src/metabolismo
11.
Cell Biol Int ; 42(10): 1445-1453, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29972266

RESUMO

Our previous study found that ClC-3 chloride channel functioned differently in the vascular and intestinal inflammation, the loss of ClC-3 reduced vascular inflammation but exacerbated intestinal inflammation. To furtherly clarify the role of ClC-3 chloride channels in systemic inflammation, we used LPS-induced endotoxemia model to investigate the response of wild-type and ClC-3 knockout mice to systemic inflammation. The results showed that in the LPS-induced endotoxemia model, the mortality of mice with ClC-3 deletion was significantly higher than that of wild-type mice. The liver and lung inflammations in mice with ClC-3 deletion were significantly less than those in wild-type mice, and the levels of TNF-α and MIP-2 in serum were lower than those of wild-type mice. However, intestinal inflammatory cytokines contents and intestinal permeability were higher than wild-type mice. After transfection of THP-1 cells with ClC-3 siRNA, the contents of TNF-α and IL-8 in LPS-induced cell supernatants were significantly decreased. Further experiments revealed that the level of Bax and Cleaved Caspase 3 in intestinal tissue of mice with ClC-3 deletion was significantly increased, while the level of Bcl2 did not change, which indicated that the intestinal apoptosis was increased after LPS-induced mice intestinal integrity destruction. Therefore, the regulation of intestinal tissue integrity by ClC-3 is crucial for maintaining LPS-induced survival in mice with endotoxemia.


Assuntos
Canais de Cloreto/metabolismo , Animais , Apoptose/fisiologia , Quimiocina CXCL2/metabolismo , Canais de Cloreto/genética , Citocinas , Modelos Animais de Doenças , Endotoxemia/metabolismo , Inflamação , Intestinos/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
12.
Oncol Rep ; 40(1): 443-453, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750313

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.


Assuntos
Antígenos CD/genética , Caderinas/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Fosforilação , Transdução de Sinais
13.
Biochem Biophys Res Commun ; 495(2): 1864-1870, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225169

RESUMO

Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.


Assuntos
Aortite/imunologia , Calcineurina/imunologia , Cálcio/imunologia , Moléculas de Adesão Celular/imunologia , Endotélio Vascular/imunologia , Fatores de Transcrição NFATC/imunologia , Proteína ORAI1/imunologia , Animais , Aortite/patologia , Células Cultivadas , Regulação para Baixo/imunologia , Humanos , Mediadores da Inflamação/imunologia , Redes e Vias Metabólicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Physiol Biochem ; 44(5): 1923-1938, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29224008

RESUMO

BACKGROUND/AIMS: Glial cell line-derived neurotrophic factor (GDNF) is an important factor promoting invasive glioma growth. This study was performed to reveal a unique mechanism of glioma cell proliferation and migration. METHODS: Human U251 glioma cells were used to screen the optimal GDNF concentration and treatment time to stimulate proliferation and migration. MicroRNA (MiRNA) expression profiles were detected by microarray and confirmed by real-time polymerase chain reaction (PCR). The target genes of differentially expressed miRNAs were predicted by miRWalk, and those targeted by multiple miRNAs were screened with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A regulatory miRNA network was constructed using ingenuity pathway analysis (IPA). Target gene expression of differentially expressed miRNAs was examined by real-time PCR or mRNA microarray. RESULTS: The results show that 50 ng/mL GDNF for 24 h significantly promotes U251 glioma cell proliferation and migration (P < 0.05). Seven miRNAs (hsa-miR-194-5p, hsa-miR-152-3p, hsa-miR-205-5p, hsa-miR-629-5p, hsa-miR-3609, hsa-miR-183-5p, and hsa-miR-487b-3p) were significantly up-regulated after GDNF treatment (P < 0.05). These miRNAs are primarily involved in signal transduction, cell adhesion and cell cycle through mitogen-activated protein kinase (MAPK) signaling, focal adhesion and glioma signal pathways. Five of these miRNAs (hsa-miR-194-5p, hsa-miR-152-3p, hsa-miR-205-5p, hsa-miR-183-5p, and hsa-miR-487b-3p) co-regulate TP53 and Akt. mRNA expression levels of four genes co-targeted by two or more up-regulated miRNAs were significantly decreased after GDNF treatment (P < 0.05). CONCLUSION: GDNF treatment of U251 glioma cells significantly increased the expression of seven miRNAs involved in cell adhesion and the cell cycle.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , MicroRNAs/metabolismo , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Análise por Conglomerados , Glioma/metabolismo , Glioma/patologia , Humanos , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Ann Transl Med ; 3(22): 358, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26807413

RESUMO

Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

16.
Gut ; 63(10): 1587-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24440986

RESUMO

BACKGROUND: ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE: To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN: After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS: ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS: A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.


Assuntos
Antiporters/metabolismo , Canais de Cloreto/fisiologia , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Trato Gastrointestinal/metabolismo , Celulas de Paneth/patologia , Animais , Antiporters/efeitos dos fármacos , Apoptose , Western Blotting , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Trinitrobenzenossulfônico/toxicidade
17.
Hypertension ; 60(6): 1407-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23108656

RESUMO

Nitric oxide generated by endothelial nitric oxide synthase (eNOS) plays an important role in maintaining cardiovascular homeostasis. Under various pathological conditions, abnormal expression of eNOS contributes to endothelial dysfunction and the development of cardiovascular diseases. A variety of pathological stimuli has been reported to decrease eNOS expression mainly through decreasing eNOS mRNA stability by regulating the binding of several cytosolic proteins to the cis-acting sequences within eNOS mRNA 3' untranslated regions. However, the detailed mechanisms remain elusive. Because microRNAs inhibit gene expression through binding to the 3' untranslated regions of their target mRNAs, microRNAs may be the important posttranscriptional modulators of eNOS expression. Here, we provided evidence that eNOS is a direct target of miR-155. Overexpression of miR-155 decreased, whereas inhibition of miR-155 increased, eNOS expression and NO production in human umbilical vein endothelial cells and acetylcholine-induced endothelium-dependent vasorelaxation in human internal mammary arteries. Inflammatory cytokines including tumor necrosis factor-α increased miR-155 expression. Inhibition of miR-155 reversed tumor necrosis factor-α-induced downregulation of eNOS expression and impairment of endothelium-dependent vasorelaxation. Moreover, we observed that simvastatin attenuated tumor necrosis factor-α-induced upregulation of miR-155 and ameliorated the effects of tumor necrosis factor-α on eNOS expression and endothelium-dependent vasodilation. Simvastatin decreased miR-155 expression through interfering mevalonate-geranylgeranyl-pyrophosphate-RhoA signaling pathway. These findings indicated that miR-155 is an essential regulator of eNOS expression and endothelium-dependent vasorelaxation. Inhibition of miR-155 may be a new therapeutic approach to improve endothelial dysfunction during the development of cardiovascular diseases.


Assuntos
Endotélio Vascular/metabolismo , Artéria Torácica Interna/metabolismo , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação/genética , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Artéria Torácica Interna/efeitos dos fármacos , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Sinvastatina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Vasodilatação/efeitos dos fármacos
18.
Hypertension ; 60(5): 1287-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23006728

RESUMO

Recent evidence suggested that ClC-3 channel/antiporter is involved in regulation of nuclear factor (NF)-κB activation. However, the mechanism explaining how ClC-3 modulates NF-κB signaling is not well understood. We hypothesized that ClC-3-dependent alteration of intracellular chloride concentration ([Cl(-)](i)) underlies the effect of ClC-3 on NF-κB activity in endothelial cells. Here, we found that reduction of [Cl(-)](i) increased tumor necrosis factor-α (TNFα)-induced expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 and adhesion of monocytes to endothelial cells (P<0.05; n=6). In Cl(-) reduced solutions, TNFα-evoked IκB kinase complex ß and inhibitors of κBα phosphorylation, inhibitors of κBα degradation, and NF-κB nuclear translocation were enhanced. In addition, TNFα and interleukin 1ß could activate an outward rectifying Cl(-) current in human umbilical vein endothelial cells and mouse aortic endothelial cells. Knockdown or genetic deletion of ClC-3 inhibited or abolished this Cl(-) conductance. Moreover, Cl(-) channel blockers, ClC-3 knockdown or knockout remarkably reduced TNFα-induced intercellular adhesion molecule 1 and vascular cell adhesion molecule 1expression, monocytes to endothelial cell adhesion, and NF-κB activation (P<0.01; n=6). Furthermore, TNFα-induced vascular inflammation and neutrophil infiltration into the lung and liver were obviously attenuated in ClC-3 knockout mice (P<0.01; n=7). Our results demonstrated that decrease of [Cl(-)](i) induced by ClC-3-dependent Cl(-) efflux promotes NF-κB activation and thus potentiates TNFα-induced vascular inflammation, suggesting that inhibition of ClC-3-dependent Cl(-) current or modification of intracellular Cl(-) content may be a novel therapeutic approach for inflammatory diseases.


Assuntos
Cloretos/metabolismo , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Western Blotting , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/farmacologia , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Interferência de RNA , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA