Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Front Microbiol ; 15: 1279536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132140

RESUMO

Introduction: Cistanche salsa (C.A.Mey.) G. Beck is a perennial holoparasitic herb recognized for its medicinal properties, particularly in kidney-tonifying and laxative treatments. Despite its therapeutic potential, little is known about the endophyte communities inhabiting C. salsa and its host plants, and how these microorganisms may impact the production and accumulation of metabolites in C. salsa. Methods: We conducted a dual analysis focusing on metabolomics of wild C. salsa and microbiome characterization of both C. salsa and its host plant, Kalidium foliatum (Pall.) Moq. The metabolomics analysis revealed variations in metabolite composition across different parts of C. salsa. Additionally, the microbiome analysis involved studying endophytic bacteria and fungi, comparing their community structures between parasitic C. salsa and its host plant. Results: Significant variations in metabolite composition were observed through metabolomic profiling, which identified 93 secondary metabolites and 398 primary metabolites across various parts of C. salsa. Emphasis was placed on differences in metabolite composition within the flowers. Microbiome analysis revealed differential community compositions of endophytic bacteria between the parasitic and host plants, whereas differences in endophytic fungi were less pronounced. Certain endophytes, such as Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota, were associated with the production of specific secondary metabolites in C. salsa, including the plant-specific compound salsaside. Discussion: Our findings highlight the intricate relationship between C. salsa and its endophytic microbiota, suggesting a potential role of these microorganisms in modulating the biosynthesis of bioactive compounds. The differential preferences of endophytic bacteria and fungi across various microenvironments within the parasitic plant system underscore the complexity of these interactions. Further elucidation of these dynamics could enhance our understanding of C. salsa's medicinal properties and its ecological adaptations as a holoparasitic herb.

2.
Metabolites ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786749

RESUMO

Transcriptomics and metabolomics offer distinct advantages in investigating the differentially expressed genes and cellular entities that have the greatest influence on end-phenotype, making them crucial techniques for studying plant quality and environmental responses. While numerous relevant articles have been published, a comprehensive summary is currently lacking. This review aimed to understand the global and longitudinal research trends of transcriptomics and metabolomics in plant quality and environmental response (TMPQE). Utilizing bibliometric methods, we presented a comprehensive science mapping of the social structure, conceptual framework, and intellectual foundation of TMPQE. We uncovered that TMPQE research has been categorized into three distinct stages since 2020. A citation analysis of the 29 most cited articles, coupled with a content analysis of recent works (2020-2023), highlight five potential research streams in plant quality and environmental responses: (1) biosynthetic pathways, (2) abiotic stress, (3) biotic stress, (4) development and ripening, and (5) methodologies and tools. Current trends and future directions are shaped by technological advancements, species diversity, evolving research themes, and an environmental ecology focus. Overall, this review provides a novel and comprehensive perspective to understand the longitudinal trend on TMPQE.

3.
J Plant Res ; 137(4): 575-587, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652407

RESUMO

Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , China , Papaveraceae/genética , DNA de Cloroplastos/genética , Repetições de Microssatélites/genética , Análise de Sequência de DNA
4.
Sci Rep ; 14(1): 9783, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684694

RESUMO

The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Seleção Genética , Marcadores Genéticos , Asteraceae/genética , Asteraceae/classificação , Evolução Molecular , Uso do Códon
5.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340858

RESUMO

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Assuntos
Cynomorium , Microbiota , Triterpenos , Transcriptoma , Cynomorium/química , Cynomorium/fisiologia , Álcalis , Metaboloma
6.
Food Funct ; 15(5): 2343-2365, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38323507

RESUMO

American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/química , Flores/metabolismo , Folhas de Planta/metabolismo , Panax/química , Raízes de Plantas/química
7.
J Plant Res ; 137(1): 37-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917204

RESUMO

Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.


Assuntos
Genoma de Cloroplastos , Geum , Filogenia , Genoma de Cloroplastos/genética , Geum/genética , Genômica/métodos , Cloroplastos/genética
8.
Fitoterapia ; 172: 105787, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122855

RESUMO

Eleutherine bulbosa (Mill.) Urb. is a medicinal and edible plant with various benefits for humans and animals. In this work, four new phenolic constituents (1-4), along with six known phenolic compounds (5-10) were obtained from the red bulbs of E. bulbosa. Their structures with absolute configurations were characterized by extensive spectroscopic analysis, combined with HR-ESI-MS and quantum mechanical electronic circular dichroism (ECD). Compounds 1 and 2 are novel homologous and heterodimers, respectively, featuring an unusual spiro ring system. All isolated phenolic constituents were tested for their antibacterial effects. The results revealed four phenolic compounds 1-3 and 7 showed moderate antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli with minimum inhibitory concentration (MIC) values ranging from 15.6 to 250.0 µg/mL.


Assuntos
Antibacterianos , Iridaceae , Animais , Humanos , Estrutura Molecular , Staphylococcus aureus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Fenóis/farmacologia , Fenóis/química , Escherichia coli
9.
Gene ; 893: 147919, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37884103

RESUMO

Nepeta bracteata (N. bracteata) is an important medicinal plant used by Chinese ethnic minorities. However, the lack of knowledge regarding the chloroplast genome of N. bracteata has imposed current limitations on our study. Here, we used Next-generation sequencing to obtain the chloroplast genome of N. bracteata. The findings suggested that the 151,588 bp cp genome of N. bracteata comprises 130 genes, including 35 tRNA genes and 87 protein-coding genes. And its chloroplast genome exhibits a typical quadripartite structure, the largest single copy (LSC; 82,819 bp) and the smallest single copy (SSC; 17,557 bp) separate a pair of inverted repeats IR regions (IRa and IRb; 25,606 bp) from one another. Interestingly, palindromic repeats are more common, as shown by the examination of repetition. In the interim, 18 SSRs were discovered in the interim, the bulk of which were Adenine-Thymine (A-T) mononucleotides. Meanwhile, we compared it with five other species from the Nepeta genus. Five hypervariable areas were found by the study, including ndhH-rps15, accD-psal, ndhG-ndhl, trnH-GUG-psbA, and rpoC1-rpoB. Furthermore, the phylogenetic study revealed that N. bracteata and Nepeta stewartiana (N. stewartiana) were linked to each other most closely. In summary, our findings enrich the resources available for chloroplast genomes in the Nepeta genus. Moreover, these hypervariable regions have the potential to be developed into molecular markers, enabling the rapid identification of species within the Nepeta genus. Comparative analysis of species within the Nepeta genus can help enhance our study of their phylogenetic relationships, potential medicinal properties and bioprospecting.


Assuntos
Genoma de Cloroplastos , Nepeta , Plantas Medicinais , Filogenia , Nepeta/genética , Cloroplastos/genética , Plantas Medicinais/genética
10.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4959-4966, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802837

RESUMO

The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.


Assuntos
Panax , Plantas Medicinais , Ecossistema , China , Sistemas de Informação Geográfica , Temperatura
11.
Planta ; 258(5): 98, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831319

RESUMO

MAIN CONCLUSION: In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes. Caragana spinosa belongs to the Papilionoidea subfamily and has significant pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled and analyzed the plastome and mitogenome of C. spinosa using the Illumina and Nanopore DNA sequencing data. The plastome of C. spinosa was 129,995 bp belonging to the inverted repeat lacking clade (IRLC), which contained 77 protein-coding genes, 29 tRNA genes, and four rRNA genes. The mitogenome was 378,373 bp long and encoded 54 unique genes, including 33 protein-coding, three ribosomal RNA (rRNA), and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, alternative conformations mediated by one and four repetitive sequences in the plastome and mitogenome were identified and validated, respectively. The inverted repeat (PDR12, the 12th dispersed repeat sequence in C. spinosa plastome) of plastome mediating recombinant was conserved in the genus Caragana. Furthermore, we identified 14 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. A phylogenetic analysis of protein-coding genes extracted from the plastid and mitochondrial genomes revealed congruent topologies. Analyses of sequence divergence found one intergenic region, trnN-GUU-ycf1, exhibiting a high degree of variation, which can be used to develop novel molecular markers to distinguish the nine Caragana species accurately. This plastome and mitogenome of C. spinosa could provide critical information for the molecular breeding of C. spinosa and be used as a reference genome for other species of Caragana. In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes.


Assuntos
Caragana , Genoma Mitocondrial , Genomas de Plastídeos , Genoma Mitocondrial/genética , Caragana/genética , Filogenia , Plastídeos/genética , RNA de Transferência/genética
12.
Front Microbiol ; 14: 1154688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538848

RESUMO

Introduction: Plant microorganism is critical to plant health, adaptability, and productive forces. Intriguingly, the metabolites and microorganisms can act upon each other in a plant. The union of metabolomics and microbiome may uncover the crucial connections of the plant to its microbiome. It has important benefits for the agricultural industry and human being health, particularly for Chinese medical science investigation. Methods: In this last 2 years study, on the strength of the UPLC-MS/MS detection platform, we accurately qualitatively, and quantitatively measured the Cistanche sinensis fleshy stems of two ecotypes. Thereafter, through high-throughput amplicon sequencing 16S/ITS sequences were procured. Results: PhGs metabolites including echinacoside, isoacteoside, and cistanoside A were significantly downregulated at two ecotypes of C. sinensis. Add up to 876 metabolites were monitored and 231 differential metabolites were analyzed. Further analysis of 34 core differential metabolites showed that 15 compounds with up-regulated belonged to phenolic acids, flavonoids, and organic acids, while 19 compounds with down-regulated belonged to phenolic acids, flavonoids, alkaloids, amino acids, lipids, and nucleotides. There was no noteworthy discrepancy in the endophytic bacteria's α and ß diversity between sandy and loam ecotypes. By comparison, the α and ß diversity of endophytic fungi was notably distinct. The fungal community of the loam ecotype is more abundant than the sandy ecotype. However, there were few such differences in bacteria. Most abundant genera included typical endophytes such as Phyllobacterium, Mycobacterium, Cistanche, Geosmithia, and Fusarium. LEfSe results revealed there were 11 and 20 biomarkers of endophytic bacteria and fungi in C. sinensis at two ecotypes, respectively. The combination parsing of microflora and metabolites indicated noteworthy relativity between the endophytic fungal communities and metabolite output. Key correlation results that Anseongella was positive relation with Syringin, Arsenicitalea is negative relation with 7-methylxanthine and Pseudogymnoascus is completely positively correlated with nepetin-7-O-alloside. Discussion: The aim of this research is: (1) to explore firstly the influence of ecotype on C. sinensis from the perspective of endophytes and metabolites; (2) to investigate the relationship between endophytes and metabolites. This discovery advances our understanding of the interaction between endophytes and plants and provides a theoretical basis for cultivation of C. sinensis in future.

13.
Gene ; 871: 147427, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37044183

RESUMO

BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time. RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem). CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.


Assuntos
Artemisia , Chrysanthemum , Genoma Mitocondrial , Tanacetum , Humanos , Artemisia/genética , Tanacetum/genética , Chrysanthemum/genética , Filogenia , Mitocôndrias/genética , Proteínas Mitocondriais/genética
14.
Planta ; 257(4): 72, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862222

RESUMO

MAIN CONCLUSION: We identified circRNAs in the Cannabis sativa L. genome and examined their association with 28 cannabinoids in three tissues of C. sativa. Nine circRNAs are potentially involved in the biosynthesis of six cannabinoids. Cannabis sativa L. has been widely used in the production of medicine, textiles, and food for over 2500 years. The main bioactive compounds in C. sativa are cannabinoids, which have multiple important pharmacological actions. Circular RNAs (circRNAs) play essential roles in growth and development, stress resistance, and the biosynthesis of secondary metabolites. However, the circRNAs in C. sativa remain unknown. In this study, to explore the role of circRNAs in cannabinoid biosynthesis, we performed RNA-Seq and metabolomics analysis on the leaves, roots, and stems of C. sativa. We identified 741 overlapping circRNAs by three tools, of which 717, 16, and 8 circRNAs were derived from exonic, intronic, and intergenic, respectively. Functional enrichment analysis indicated that the parental genes (PGs) of circRNAs were enriched in many processes related to biological stress responses. We found that most of the circRNAs showed tissue-specific expression and 65 circRNAs were significantly correlated with their PGs (P < 0.05, |r|≥ 0.5). We also determined 28 cannabinoids by High-performance liquid chromatography-ESI-triple quadrupole-linear ion trap mass spectrometry. Ten circRNAs, including ciR0159, ciR0212, ciR0153, ciR0149, ciR0016, ciR0044, ciR0022, ciR0381, ciR0006, and ciR0025 were found to be associated with six cannabinoids by weighted gene co-expression network analysis. Twenty-nine of 53 candidate circRNAs, including 9 cannabinoids related were validated successfully using PCR amplification and Sanger sequencing. Taken together, all these results would help to enhance our acknowledge of the regulation of circRNAs, and lay the foundation for breeding new C. sativa cultivars with high cannabinoids through manipulating circRNAs.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , RNA Circular/genética , Melhoramento Vegetal , Metabolômica
15.
Heliyon ; 9(3): e14029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911881

RESUMO

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

16.
Food Funct ; 14(6): 2710-2726, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36852499

RESUMO

Safflower (Carthamus tinctorius) has the efficacy for promoting blood circulation and preventing cardiovascular and Alzheimer's diseases and is thus a valuable medicinal and functional food plant. However, how to evaluate high-quality safflower is still a problem. To differentiate intraspecies ecotypes and illustrate the mechanisms of differential metabolites of C. tinctorius from different regions, this study combined the widely targeted metabolome, weighted network pharmacology, and molecular docking to filter bioactive compounds and predict the target preference. The results indicated that kaempferol is suitable as a secondary Q-marker to differentiate intraspecies ecotypes. In secondary metabolites, the average content of kaempferol and its derivates in C. tinctorius from Sichuan is three times that of other areas, which have the potential for the targeted medicine of CA2 and TNF. In volatile metabolites, isoaromadendrene epoxide has the potential as a specifically targeted medicine of RXRA. The change of the target preference could be the reason for the difference in drug efficacy among different varieties of C. tinctorius. It is reasonable that Sichuan was recognized as a high-quality ecotype producing region of C. tinctorius in China, which promotes blood circulation and removes blood stasis. This study provides an innovative method to differentiate intraspecies ecotypes and explore their target preference.


Assuntos
Carthamus tinctorius , Quempferóis , Ecótipo , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo
17.
Environ Microbiome ; 18(1): 11, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814319

RESUMO

BACKGROUND: Rhizosphere and plant microbiota are assumed to play an essential role in deciding the well-being of hosts, but effects of parasites on their host microbiota have been rarely studied. Also, the characteristics of the rhizosphere and root microbiota of parasites and hosts under parasitism is relatively unknown. In this study, we used Cistanche deserticola and Haloxylon ammodendron from cultivated populations as our model parasites and host plants, respectively. We collected samples from BULK soil (BULK), rhizosphere soil of H. ammodendron not parasitized (NCD) and parasitized (RHA) to study how the parasite influenced the rhizosphere microbiota of the host. We also collected samples from the rhizosphere soil and roots of C. deserticola (RCD and ECD) and Haloxylon ammodendron (RHA and EHA) to explore the difference between the microbiota of the parasite and its host under parasitism. RESULTS: The parasite reduced the compositional and co-occurrence network complexities of bacterial and fungal microbiota of RHA. Additionally, the parasite increased the proportion of stochastic processes mainly belonging to dispersal limitation in the bacterial microbiota of RHA. Based on the PCoA ordinations and permutational multivariate analysis of variance, the dissimilarity between microbiota of C. deserticola and H. ammodendron were rarely evident (bacteria, R2 = 0.29971; fungi, R2 = 0.15631). Interestingly, four hub nodes of H. ammodendron in endosphere fungal microbiota were identified, while one hub node of C. deserticola in endosphere fungal microbiota was identified. It indicated that H. ammodendron played a predominant role in the co-occurrence network of endosphere fungal microbiota. Source model of plant microbiome suggested the potential source percentage from the parasite to the host (bacteria: 52.1%; fungi: 16.7%) was lower than host-to-parasite (bacteria: 76.5%; fungi: 34.3%), illustrating that microbial communication was bidirectional, mainly from the host to the parasite. CONCLUSIONS: Collectively, our results suggested that the parasite C. deserticola shaped the diversity, composition, co-occurrence network, and community assembly mechanisms of the rhizosphere microbiota of H. ammodendron. Additionally, the microbiota of C. deserticola and H. ammodendron were highly similar and shared. Our findings on parasite and host microbiota provided a novel line of evidence supporting the influence of parasites on the microbiota of their hosts.

18.
Mol Biotechnol ; 65(8): 1207-1227, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36562872

RESUMO

RNA editing is a post-transcriptional process that introduces changes in RNA sequences encoded by nuclear, mitochondrial, or plastid genomes. To understand the research progress of plant RNA editing, we comprehensively analyze the articles on plant RNA editing from 2001 to 2022 through bibliometric methods. Nucleic Acids Research, Plant Journal and Plant cell are the journals that deserve attention with their high production, total local citation scores (TLCS), and h-indexes. The USA, China, and Germany are the top three countries with highly productive publications. Ulm University, Cornell University, and Chinese Acad Sci are excellent cooperative institutions with a high level of influence in the field, and KNOOP V and TAKENAKA M are good partnership. Plant RNA editing researches concentrate on the subject categories of Biochemistry & Molecular Biology, Plant Sciences, Genetics & Heredity, etc. Plant mitochondria, genome editing and messenger-RNA may be the research hotspots in the future. The main plant RNA editing research tools are JACUSA, SPRINT, and REDO, and the main databases are REDIdb, PED, and dbRES. At present, the research streams are (1) RNA editing sites; (2) Pentapeptide repeat protein (PPR) involved in RNA editing; (3) RNA editing factors. Overall, this article summarizes the research overview of plant RNA editing until 2022 and provides theoretical implications for its possible future directions.


Assuntos
Mitocôndrias , Edição de RNA , Humanos , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Mensageiro/metabolismo , Mitocôndrias/genética , Bibliometria
19.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553677

RESUMO

Opisthopappus C. Shih is a rare genus of the Asteraceae family native to the Taihang Mountains in China. Due to the narrow distribution area, poor reproduction ability and human harvesting, Opisthopappus is threatened by extinction. However, the limited genetic information within Opisthopappus impede understanding of the conservation efforts and bioprospecting. Therefore, in this study, we reported the complete chloroplast (cp) genome sequences of two Opisthopappus species, including Opisthopappus taihangensis and Opisthopappus longilobus. The cp genomes of O. taihangensis and O. longilobus were 151,117 and 151,123 bp, which contained 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The repeat sequences, codon usage, RNA-editing sites, and comparative analyses revealed a high degree of conservation between the two species. The ycf1 gene was identified as a potential molecular marker. The phylogenetic tree demonstrated that O. longilobus was a separate species and not a synonym or variety of O. taihangensis. The molecular clock showed that two species diverge over a large time span, O. longilobus diverged at 15.24 Mya (Million years ago), whereas O. taihangensis diverged at 5.40 Mya We found that Opisthopappus and Ajania are closely related, which provides new ideas for the development of Opisthopappus. These results provide biological information and an essential basis to understand the evolutionary history of the Opisthopappus species, which will aid in the future the bioprospecting and conservation of endangered species.


Assuntos
Asteraceae , Genoma de Cloroplastos , Humanos , Animais , Filogenia , Espécies em Perigo de Extinção , Asteraceae/genética , Sequências Repetitivas de Ácido Nucleico
20.
Genes (Basel) ; 13(12)2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36553498

RESUMO

Laportea bulbifera (L. bulbifera) is an important medicinal plant of Chinese ethnic minorities, with high economic and medicinal value. However, the medicinal materials of the genus Laportea are prone to be misidentified due to the similar morphological characteristics of the original plants. Thus, it is crucial to discover their molecular marker points and to precisely identify these species for their exploitation and conservation. Here, this study reports detailed information on the complete chloroplast (cp) of L. bulbifera. The result indicates that the cp genome of L. bulbifera of 150,005 bp contains 126 genes, among them, 37 tRNA genes and 81 protein-coding genes. The analysis of repetition demonstrated that palindromic repeats are more frequent. In the meantime, 39 SSRs were also identified, the majority of which were mononucleotides Adenine-Thymine (A-T). Furthermore, we compared L. bulbifera with eight published Laportea plastomes, to explore highly polymorphic molecular markers. The analysis identified four hypervariable regions, including rps16, ycf1, trnC-GCA and trnG-GCC. According to the phylogenetic analysis, L. bulbifera was most closely related to Laportea canadensis (L. canadensis), and the molecular clock analysis speculated that the species originated from 1.8216 Mya. Overall, this study provides a more comprehensive analysis of the evolution of L. bulbifera from the perspective of phylogenetic and intrageneric molecular variation in the genus Laportea, which is useful for providing a scientific basis for further identification, taxonomic, and evolutionary studies of the genus.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Filogenia , Plantas Medicinais/genética , Cloroplastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA