Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 17(8): 1453-1461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156772

RESUMO

AIM: To quantitatively assess the changes in mean vascular tortuosity (mVT) and mean vascular width (mVW) around the optic disc and their correlation with gestational age (GA) and birth weight (BW) in premature infants without retinopathy of prematurity (ROP). METHODS: A single-center retrospective study included a total of 133 (133 eyes) premature infants [mean corrected gestational age (CGA) 43.6wk] without ROP as the premature group and 130 (130 eyes) CGA-matched full-term infants as the control group. The peripapillary mVT and mVW were quantitatively measured using computer-assisted techniques. RESULTS: Premature infants had significantly higher mVT (P=0.0032) and lower mVW (P=0.0086) by 2.68 (104 cm-3) and 1.85 µm, respectively. Subgroup analysis with GA showed significant differences (P=0.0244) in mVT between the early preterm and middle to late preterm groups, but the differences between mVW were not significant (P=0.6652). The results of the multiple linear regression model showed a significant negative correlation between GA and BW with mVT after adjusting sex and CGA (P=0.0211 and P=0.0006, respectively). For each day increase in GA at birth, mVT decreased by 0.1281 (104 cm-3) and for each 1 g increase in BW, mVT decreased by 0.006 (104 cm-3). However, GA (P=0.9402) and BW (P=0.7275) were not significantly correlated with mVW. CONCLUSION: Preterm birth significantly affects the peripapillary vascular parameters that indicate higher mVT and narrower mVW in premature infants without ROP. Alterations in these parameters may provide new insights into the pathogenesis of ocular vascular disease.

2.
Int J Ophthalmol ; 17(3): 420-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721513

RESUMO

AIM: To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells (LECs) under hyperosmotic stress. METHODS: LECs were treated with hyperosmotic stress at the concentration of 270, 300, 400, 500, or 600 mOsm for 6, 12, 18, 24h in vitro. Polymerase chain reaction (PCR) was employed for the mRNA expression of autophagy-related genes, while Western blotting detected the targeted protein expression. The transfection of stub-RFP-sens-GFP-LC3 autophagy-related double fluorescence lentivirus was conducted to detect the level of autophagy flux. Scanning electron microscopy was used to detect the existence of autolysosome. Short interfering RNA of autophagy-related gene (ATG) 7, transient receptor potential vanilloid (TRPV) 1 overexpression plasmid, related agonists and inhibitors were employed to their influence on autophagy related pathway. Flow cytometry was employed to test the apoptosis and intracellular Ca2+ level. Mitochondrial membrane potential was measured by JC-1 staining. The cell counting kit-8 assay was used to calculate the cellular viability. The wound healing assay was used to evaluate the wound closure rate. GraphPad 6.0 software was utilized to evaluate the data. RESULTS: The hyperosmotic stress activated autophagy in a pressure- and time-dependent manner in LECs. Beclin 1 protein expression and conversion of LC3B II to LC3B I increased, whereas sequestosome-1 (SQSTM1) protein expression decreased. Transient Ca2+ influx was stimulated caused by hyperosmotic stress, levels of mammalian target of rapamycin (mTOR) phosphorylation decreased, and the level of AMP-activated protein kinase (AMPK) phosphorylation increased in the early stage. Based on this evidence, autophagy activation through the Ca2+-dependent AMPK/mTOR pathway might represent an adaptation process in LECs under hyperosmotic stress. Hyperosmotic stress decreased cellular viability and accelerated apoptosis in LECs and cellular migration decreased. Inhibition of autophagy by ATG7 knockdown had similar results. TRPV1 overexpression increased autophagy and might be crucial in the occurrence of autophagy promoted by hyperosmotic stress. CONCLUSION: A combination of hyperosmotic stress and autophagy inhibition may be a promising approach to decrease the number of LECs in the capsular bag and pave the way for improving prevention of posterior capsular opacification and capsular fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA