Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 358: 124492, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960117

RESUMO

Immobilization and stabilization of heavy metals (HMs) in sulfidic and metallic tailings are critical to long-term pollution control and sustainable ecological rehabilitation. This study aims to unravel immobilization mechanisms of Pb (Ⅱ) in the neoformed hardpan structure resulting from Acidithiobacillus spp. accelerated bioweathering of sulfides in the presence of silicates. It was found that the bioweathered mineral composite exhibited an elevated Pb (Ⅱ) adsorption capacity compared to that of natural weathered mineral composite. A suit of microspectroscopic techniques such as synchrotron-based X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Field-Emission Scanning Electron Microscope (FE-SEM) indicated that secondary Fe-bearing minerals, functional groups, and surface properties in the neoformed hardpan were key factors contributing to Pb (Ⅱ) adsorption and immobilization in ferric-silica microstructures. The underlying mechanisms might involve surface adsorption-complexation, dissolution-precipitation, electrostatic attraction, and ion exchange. Microbial communities within the muscovite groups undergoing bioweathering processes demonstrated distinctive survival strategies and community composition under the prevailing geochemical conditions. This proof of concept regarding Pb (Ⅱ) immobilization in microbial transformed mineral composite would provide the basis for scaling up trials for developing field-feasible methodology to management HMs pollution in sulfidic and metallic tailings in near future.

3.
Sci Total Environ ; 912: 169163, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072279

RESUMO

Hardpan-based profiles naturally formed under semi-arid climatic conditions have substantial potential in rehabilitating sulfidic tailings, resulting from their aggregation microstructure regulated by Fe-Si cements. Nevertheless, eco-engineered approaches for accelerating the formation of complex cementation structure remain unclear. The present study aims to investigate the microbial functions of extremophiles on mineral dissolution, oxidation, and aggregation (cementation) through a microcosm experiment containing pyrites and polysilicates, of which are dominant components in typical sulfidic tailings. Microspectroscopic analysis revealed that pyrite was rapidly dissolved and massive microbial corrosion pits were displayed on pyrite surfaces. Synchrotron-based X-ray absorption spectroscopy demonstrated that approximately 30 % pyrites were oxidized to jarosite-like (ca. 14 %) and ferrihydrite-like minerals (ca. 16 %) in talc group, leading to the formation of secondary Fe precipitates. The Si ions co-dissolved from polysilicates may be embedded into secondary Fe precipitates, while these clustered Fe-Si precipitates displayed distinct morphology (e.g., "circular" shaped in the talc group, "fine-grained" shaped in the chlorite group, and "donut" shaped in the muscovite group). Moreover, the precipitates could join together and act as cementing agents aggregating mineral particles together, forming macroaggregates in talc and chlorite groups. The present findings revealed critical microbial functions on accelerating mineral dissolution, oxidation, and aggregation of pyrite and various silicates, which provided the eco-engineered feasibility of hardpan-based technology for mine site rehabilitation.


Assuntos
Acidithiobacillus , Cloretos , Ferro , Dióxido de Silício , Sulfetos , Talco , Minerais/química , Eletrólitos , Ferro da Dieta
4.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091466

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Assuntos
Compostos Férricos , Micorrizas , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Análise de Fourier , Minerais/química , Solo/química , Ferro
5.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085882

RESUMO

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Assuntos
Compostos de Ferro , Minerais , Bactérias , Enxofre , Oxirredução , Ferro , Solo , Concentração de Íons de Hidrogênio
6.
New Phytol ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37529867

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.

8.
Environ Sci Technol ; 57(33): 12325-12338, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37574860

RESUMO

Organic matter (OM) formation and stabilization are critical processes in the eco-engineered pedogenesis of Fe ore tailings, but the underlying mechanisms are unclear. The present 12 month microcosm study has adopted nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based scanning transmission X-ray microscopy (STXM) techniques to investigate OM formation, molecular signature, and stabilization in tailings at micro- and nanometer scales. In this system, microbial processing of exogenous isotopically labeled OM demonstrated that 13C labeled glucose and 13C/15N labeled plant biomass were decomposed, regenerated, and associated with Fe-rich minerals in a heterogeneous pattern in tailings. Particularly, when tailings were amended with plant biomass, the 15N-rich microbially derived OM was generated and bound to minerals to form an internal organo-mineral association, facilitating further OM stabilization. The organo-mineral associations were primarily underpinned by interactions of carboxyl, amide, aromatic, and/or aliphatic groups with weathered mineral products derived from biotite-like minerals in fresh tailings (i.e., with Fe2+ and Fe3+) or with Fe3+ oxyhydroxides in aged tailings. The study revealed microbial OM generation and subsequent organo-mineral association in Fe ore tailings at the submicrometer scale during early stages of eco-engineered pedogenesis, providing a basis for the development of microbial based technologies toward tailings' ecological rehabilitation.


Assuntos
Nitrogênio , Solo , Solo/química , Minerais/química , Biomassa , Ferro
9.
iScience ; 26(7): 107102, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485366

RESUMO

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

10.
J Environ Manage ; 338: 117837, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023611

RESUMO

Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na+) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H+ dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pKa), but also on the chelating property of dissociated conjugate anions. Following an initial H+-Na+ exchange, Na+ removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.


Assuntos
Óxido de Alumínio , Sódio , Óxido de Alumínio/química , Silicatos de Alumínio , Ânions , Compostos Orgânicos
11.
Environ Sci Technol ; 57(9): 3940-3950, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36800282

RESUMO

Selective and highly efficient extraction technologies for the recovery of critical metals including lithium, nickel, cobalt, and manganese from spent lithium-ion battery (LIB) cathode materials are essential in driving circularity. The tailored deep eutectic solvent (DES) choline chloride-formic acid (ChCl-FA) demonstrated a high selectivity and efficiency in extracting critical metals from mixed cathode materials (LiFePO4:Li(NiCoMn)1/3O2 mass ratio of 1:1) under mild conditions (80 °C, 120 min) with a solid-liquid mass ratio of 1:200. The leaching performance of critical metals could be further enhanced by mechanochemical processing because of particle size reduction, grain refinement, and internal energy storage. Furthermore, mechanochemical reactions effectively inhibited undesirable leaching of nontarget elements (iron and phosphorus), thus promoting the selectivity and leaching efficiency of critical metals. This was achieved through the preoxidation of Fe and the enhanced stability of iron phosphate framework, which significantly increased the separation factor of critical metals to nontarget elements from 56.9 to 1475. The proposed combination of ChCl-FA extraction and the mechanochemical reaction can achieve a highly selective extraction of critical metals from multisource spent LIBs under mild conditions.


Assuntos
Lítio , Reciclagem , Metais , Cobalto , Fontes de Energia Elétrica , Ferro
12.
Sci Total Environ ; 856(Pt 1): 159078, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179848

RESUMO

The acidophilic sulfur oxidizing bacterium (SOB), Acidithiobacillus ferrooxidans, has been found to stimulate elemental sulfur (S0) oxidation and mineral weathering in alkaline Fe ore tailings. However, A. ferrooxidans growth and activities depend on the pH conditions surrounding their interfaces with minerals. The present study aimed to investigate how pH influences bacterial growth and functions in Fe ore tailings. A simulated aquatic 'homogeneous' incubation system was initially adjusted into acidic (pH 4), neutral (pH 7) and alkaline (pH 9) conditions, which mimicked the microenvironmental conditions of the water-cell-mineral interfaces in the tailings. It was found that A. ferrooxidans grew well and oxidised S0 under the prevailing and initially acidic conditions (pH < 6). These stimulated the weathering of biotite and amphibole-like minerals and the formation of nanosized jarosite and ferrihydrite-like minerals mediated by extracellular polymer substrate (EPS). In contrast, the initially neutral/alkaline pH conditions (i.e., pH > 7) with the presence of the alkaline tailings restricted SOB growth and functions in S0-oxidation and mineral weathering. These findings suggest that it is essential to prime acidic conditions in microenvironments to support SOB growth, activities, and functions toward mineral weathering in tailings, providing critical basis for involving SOB in eco-engineered pedogenesis in tailings.


Assuntos
Minerais , Enxofre , Bactérias , Oxirredução , Ferro , Concentração de Íons de Hidrogênio
13.
Sci Total Environ ; 856(Pt 1): 159131, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183768

RESUMO

The present study aimed to characterise the adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacteria sourced from field biofilms colonising seawater-treated bauxite residue, under moderate and extremely alkaline pH conditions (8.5 to 10.8) and coupled saline (EC ≈ 50 mS/cm) conditions. The haloalkaliphilic bacterial communities demonstrated strong adaptiveness to the increasing pH from 8.5 to 10.8. The dominant groups were Exiguobacterales and Bacillales at pH 8.5 and 10, but Lactobacillales and Bacillales at pH 10.8. The exposure to pH 10.8 initially delayed bacterial growth in the first 24 h, but which rapidly recovered to a peak rate at 48 h similar to that in the pH 10 treatment. Correspondingly, lactic acid concentration at pH 10.8 rapidly rose to as high as >2000 mg/L at 48 h. Bacterial growth and organic acid production were positively related to carbohydrate supply. Overall, these bacterial groups fermented glucose to produce mainly lactic acid (>80 %) and other acids (such as acetic acid, formic acid, and succinic acid), leading to 0.5-2.0 units of pH reduction, despite the strong buffering capacity in the culture solution. The bacteria could up-regulate their phosphatase activity to mineralise the organic P in the basal nutrient broth, but increasing soluble phosphate-P at a 1:10 of glucose-C was beneficial. The biofilm-sourced bacteria communities contained redundant fermentative haloalkaliphilic groups which were adaptive to strongly alkaline pH and saline conditions.


Assuntos
Óxido de Alumínio , Bactérias , Fermentação , Óxido de Alumínio/química , Ácidos/química , Ácido Láctico , Biofilmes , Glucose , Concentração de Íons de Hidrogênio
14.
Sci Total Environ ; 822: 153627, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35124060

RESUMO

Bioneutralization of alkaline bauxite residues (BR) may be achieved through in situ organic acids produced from fermentative decomposition of carbohydrates-rich organic matters (e.g., plant residues), which are driven by organophilic and heterotrophic prokaryotes tolerant of extremely saline and alkaline conditions. The present study investigated if the resilience of tolerant prokaryotes in soil microbial inoculums could be improved by pre-culturing them in carbohydrate-rich plant residues, leading to enhanced bioneutralization efficacy in strongly alkaline BR. In a 2-week microcosm experiment with BR (pH ~ 10.5), it was found that the resilience of prokaryotic communities and their functional modules and bioneutralization efficacy were significantly boosted in BR admixed with plant residues (i.e., SM: sugarcane mulch, LH: Lucerne hay) pre-cultured with soil microbial inoculum. The results showed that 10-20% of the initially inoculated soil prokaryotic features were recovered in treatments with pre-cultured plant residues. Besides, the enriched diverse prokaryotes formed highly clustered networks in the amended BR. These modules actively drove C and N mineralization and sustained 0.8-2.0 units of pH reduction, despite the buffering effects of alkaline minerals in BR solid phase. In contrast, soil microbial inoculation cultured in the growth medium lost >99% of the original prokaryotic features in soil inoculums, resulting in merely 0.2-0.7 unit pH reduction in the treated BR. Therefore, pre-culturing soil inoculum in plant residues would be preferred as an integral system to treat BR for effective bioneutralization.


Assuntos
Óxido de Alumínio , Solo , Óxido de Alumínio/química , Bactérias , Compostos Orgânicos , Solo/química , Microbiologia do Solo
15.
Environ Pollut ; 299: 118893, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085649

RESUMO

Biochar modification by metal/metal oxide is promising for improving its adsorption capability for contaminants, especially the anions. However, conventional chemical modifications are complicated and costly. In this study, novel Fe/Fe oxide loaded biochars (RMBCs) were synthesized from a one-step co-pyrolysis of red mud (RM) and shaddock peel (SP), and their potential application for removing anionic azo dye (acid orange 7, AO7) from the aqueous environment was evaluated. Fe from red mud was successfully loaded onto biochars pyrolyzed at 300-800 °C, which presented from oxidation form (Fe2O3) to the reduction forms (FeO and Fe0) with increasing pyrolysis temperature. The RMBC produced at 800 °C with RM:SP mass ratio of 1:1 (RMBC8001:1) exhibited the best capability for AO7 removal (∼32 mg/g), attributed to both adsorption and degradation. The higher surface area of RMBC8001:1 and its greater affinity for AO7 led to the higher adsorption. In addition, RMBC8001:1-induced degradation of AO7 was another key mechanism for AO7 removal. The reduction forms of Fe (FeO or Fe0) in RMBC8001:1 may provide electrons for breaking down the azo bond in AO7 molecules and result in degradation, which is further enhanced in acid conditions due to the participation of readily release of Fe2+ and the available H+ in AO7 degradation. Furthermore, RMBC8001:1 can be easily separated from the treated water by using magnetic field, which significantly benefits its separation in wastewater treatment.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Compostos Azo , Benzenossulfonatos , Carvão Vegetal/química , Água , Poluentes Químicos da Água/análise
16.
J Hazard Mater ; 422: 126925, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34449336

RESUMO

Bauxite residues generated from alumina refineries worldwide have accumulated to more than 4 billion tons, at an annual increment of ~ 0.15 billion tons. It is imperative and urgent for the alumina sector to develop field-operable disposal solutions for rapid and cost-effective stabilisation of alkaline bauxite residues (BR) in the storage facility to minimise/prevent potential environmental risks. Taking advantage of the availability of coal ash (CA) on site, we studied a feasible way to synthesise geopolymer from active (amorphous) aluminosilicate components of BR and CA via the alkaline hydrolysis under ambient conditions. The new geopolymeric binder effectively solidifies BR-CA mixtures into indurated monoliths whose unconstrained compressive strength (UCS) can reach as high as ~ 20 MPa after 8 weeks. The Full Factorial Experimental Design was used to study relative influences of BR:CA ratio, modulus of activating solution, and H2O/Na2O ratio on UCS. Micro-spectroscopic structural analyses using electron-dispersive X-ray spectroscopy and X-ray Photoelectron Spectroscopy suggested a co-occurrence of cement-like calcium aluminosilicate hydrate (C-A-S-H) and Na-rich aluminosilicate 3D-extended network (geopolymer) within the binder phase. The advantage of this ambient geopolymerisation, without resorting to elevated temperature curing, renders a feasible way of valorising BR and CA for environmental management of alkaline wastes at alumina refineries.

17.
Sci Total Environ ; 816: 151571, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34767894

RESUMO

Diverse prokaryotic and fungal communities in soil and litters are the structural basis for driving tree litter decomposition and inherent nutrient cycling in infertile Eucalyptus open woodlands. The present investigation characterized the composition and co-occurrence network of prokaryotic and fungal communities in litter and surface soil layers in 9-year old revegetated trial landforms at Ranger uranium mine, Northern Territory, Australia. The revegetated landforms consisted of soil-subsystems engineered from waste rocks and plant-subsystems of young, novel and native Eucalyptus open woodlands. The analysis of litters and surface soil layer revealed highly diverse microbial communities in the young Eucalyptus open woodland systems, which were composed of an average 1155 prokaryotic and 236 fungal OTUs. In the microbial communities, abundant bacterial communities were affiliated to Actinobacteria (30.2%), Proteobacteria (25.3%) and Chloroflexi (16.9%); and fungal communities were highly dominated by Ascomycota (63.4%) and Basidiomycota (23.6%). These OTUs were highly connected, forming microbial modules with >50% of predicted genes associated with metabolism of organics in the open woodland. Soil microbial communities present in the wet season contained a relatively high abundance of ammonium oxidizing archaea, plant associated bacteria, and fungal groups adapted to higher N availability, particularly those from the laterite + waste rock site. The elevated microbial activities in the litters and surface soil of lateritic soil + waste rock landform were attributed to the improved water and nutrient availability by increased fine fraction of laterites. Our study provides evidence that the features of prokaryotic and fungal communities in this eco-engineered and young waste rock - open Eucalyptus woodland systems are consistent with characteristics of microbial communities of native Eucalyptus woodlands to drive the decomposition of low N tree litters.


Assuntos
Eucalyptus , Micobioma , Poluentes Radioativos do Solo , Urânio , Florestas , Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Urânio/análise
18.
J Hazard Mater ; 427: 127860, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34823947

RESUMO

Organic matter (OM) amendments and plant colonization can accelerate mineral weathering and soil formation in metal mine tailings for ecological rehabilitation. However, the weathering effects may dissolve uranium (U)-bearing minerals (e.g., ianthinite) and increase U dissolution in porewater and seepages. The present study aimed to characterize the U solubility and distribution among different fractions and investigate if biochar (BC) could decrease soluble U levels and facilitate U immobilization in the OM-amended and plant-colonized tailings. A native plant species, Red Flinders grass (Iseilema vaginiflorum) was cultivated in the tailings for four weeks, which were amended with sugarcane residue (SR) with or without BC addition. The results showed that OM amendment and plant colonization increased porewater U concentrations by almost 10 folds from ~ 0.2 mg L-1 to > 2.0 mg L-1. The BC addition decreased porewater U concentrations by 40%. Further micro-spectroscopic analysis revealed that U was immobilized through adsorption onto BC porous surfaces, via possibly complexing with oxygen-rich organic groups. Besides, the BC amendment facilitated U sequestration by secondary Fe minerals in the tailings. These findings provide important information about U biogeochemistry in Cu-tailings mediated by BC, OM and rhizosphere interactions for mitigating potential pollution risks of tailings rehabilitation.


Assuntos
Poluentes do Solo , Urânio , Carvão Vegetal , Óxido Ferroso-Férrico , Minerais , Solo , Poluentes do Solo/análise
19.
J Hazard Mater ; 425: 127943, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34894505

RESUMO

Developing alternative approaches to cap and rehabilitate the large areas of tailings landscapes is critical for sustainable development of mining industry. This study revealed the potential of an in-situ hardpan-based duplex soil system as an un-conventional approach to rehabilitate sulfidic Cu-Pb-Zn tailings. Under a shallow silicious soil cover, a massive and consistent hardpan horizon had been formed in-situ at the surface layer of tailings across the trial area, which physically separated root zones (i.e., silica soil cover) from the un-weathered tailings underneath, prevented capillary enrichment of acidity and soluble solutes into the root zones, and sustained native plant growth for more than a decade. Precipitation of Si-rich ferric complexes were attributed to the stabilisation/solidification of the sulfidic tailing. The hardpan layer possesses a highly compacted texture, a low-percolating pore network, and extreme resistance to water movement in the hardpan horizon. Further, the hardpans directly interfacing with plant roots in the soil cover were geochemically stabilised and attenuated, with very low levels of soluble metal(loid)s and a circumneutral pH condition. This case study would serve as a good incentive to develop bio-chemical engineering methodology building on current knowledge for achieving sustainable rehabilitation of sulfidic and metallic tailings in future.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo , Solo , Poluentes do Solo/análise , Sulfetos/análise , Zinco/análise
20.
Environ Sci Technol ; 55(19): 13045-13060, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34565140

RESUMO

Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.


Assuntos
Microbiota , Poluentes do Solo , Minerais , Rizosfera , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA