Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38723710

RESUMO

OBJECTIVES: To investigate the resistance mechanisms of a multidrug-resistant Salmonella Kentucky ST198 FJ-2064 isolated from a patient in China. METHODS: The antimicrobial susceptibility of FJ-2064 was determined by the standard disc dilution and broth microdilution methods. The complete genome of FJ-2064 was sequenced using PacBio and Illumina MiSeq platforms. PCR and S1-PFGE were utilised to confirm the mutation sites and the genomic plasmids, respectively. RESULTS: Isolate FJ-2064 belongs to sequence type ST198 and harboured no visible large plasmids, but was concurrent resistant to 22 detected antimicrobial agents including cefotaxime, ciprofloxacin and azithromycin. The complete genome sequence identified 20 acquired antibiotic resistance genes (ARGs) and five chromosomal mutations in the gyrA and parC genes of the quinolone resistance determining regions (QRDRs) in FJ-2064. In addition, PCR sequencing confirmed that most of the ARGs were clustered on one multidrug-resistant region and a variant of SGI1-K. In particular, the bla-TEM-1 and bla-CTX-M-55, qnrS1, mph(A) genes, which confer resistance to cephalosporins, quinolones, and macrolides respectively, were all located on the multidrug-resistant region. CONCLUSIONS: We have demonstrated one multidrug-resistant region and a variant of SGI1-K in a Salmonella Kentucky ST198 that is co-resistant to cefotaxime, ciprofloxacin and azithromycin.

2.
Small Methods ; : e2301652, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659342

RESUMO

Atomically dispersed Co-N4-based catalysts have been recently emerging as one of the most promising candidates for facilitating CO2 reduction reaction (CO2RR). The local electronic environment of Co-N4 sites in these catalysts is considered to play a critical role in adjusting the catalytic performance, the effort of which however is not yet clearly verified. Herein, a series of cobalt phthalocyanines with different peripheral substituents including unsubstituted phthalocyanine Co(II) (CoPc), 2,9,16,23-tetramethoxyphthalocyaninato Co(II) (CoPc-4OCH3), and 2,9,16,23-tetranitrophthalocyaninato Co(II) (CoPc-4NO2) are supported onto the surface of the multi-walled carbon nanotubes (CNTs), affording CoPc@CNTs, CoPc-4OCH3@CNTs, and CoPc-4NO2@CNTs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure measurements disclose the influence of the peripheral substituents on the local electronic structure of Co atoms in these three catalysts. Electrochemical tests indicate the higher CO2RR performance of CoPc-4OCH3@CNTs compared to CoPc@CNTs and CoPc-4NO2@CNTs as exemplified by the higher Faraday efficiency of CO, larger part current densities, and better stability displayed by CoPc-4OCH3@CNTs at the applied voltage range from -0.6 to -1.0 V versus RHE in both H-cell and flow cell. These results highlight the effect of the electron-donating -OCH3 substituent on the enhanced catalytic activity of CoPc-4OCH3@CNTs, which will help develop Co-N4-based catalysts with promising catalytic performance toward CO2RR.

3.
Am J Prev Med ; 66(2): 371-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37802306

RESUMO

INTRODUCTION: This study aimed to analyze changes in cardiovascular disease (CVD) mortality attributable to major environmental risks in China during 1990-2019, and their associations with age, period, and birth cohort. METHODS: Mortality data were obtained from the Global Burden of Disease Study 2019. Major environmental risks included ambient particulate matter pollution (APMP), household air pollution from solid fuels (HAP), low temperature, high temperature, and lead exposure. Age-period-cohort modeling was used to estimate the overall annual percentage change in CVD mortality (net drift), annual percentage change for each age group (local drift), expected longitudinal age-specific rate (longitudinal age curve), period and cohort relative risks (RRs, period/cohort effects) between 1990 and 2019. Analyses were conducted in 2021-2022. RESULTS: In China, five major environmental risks led to 1.62 million CVD deaths in 2019. Among these risks, the primary contributor to CVD mortality transited from HAP in 1990 to APMP in 2019. There was also an improvement in attributable CVD mortality rates for low temperature and lead exposure during 1990-2019, while an unfavorable trend was noted for high temperature. The longitudinal age curve demonstrated increased attributable CVD mortality rates with age groups for all environmental risks, with similar patterns for both sexes. Period and cohort RRs suggested generally improved risks of attributable CVD mortality for HAP, low temperature, and lead exposure, but worsening risks for APMP and high temperature in both genders, except for period risks after 2010-2014 for APMP in both sexes, period risks after 2000-2004 for high temperature in females, and cohort risks in cohorts born after 1955 for APMP and high temperature in females. CONCLUSIONS: Over the study period, there was a significant improvement in attributable CVD mortality rates in China for HAP, low temperature and lead exposure, but an unfavorable trend was noted for APMP and high temperature.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Humanos , Masculino , Feminino , Chumbo , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Risco , China/epidemiologia , Exposição Ambiental/efeitos adversos
4.
J Mol Biol ; 436(7): 168414, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141874

RESUMO

The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.


Assuntos
Histonas , Lisina Acetiltransferase 5 , Nucleossomos , Domínio Tudor , Acetilação , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Lisina Acetiltransferase 5/química , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Humanos
5.
Nat Commun ; 14(1): 5362, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660055

RESUMO

The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.


Assuntos
Inibidores de Histona Desacetilases , Histonas , Humanos , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Inibição Psicológica , Fatores de Transcrição/genética
6.
Front Microbiol ; 14: 1149981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362935

RESUMO

Introduction: Toxigenic Vibrio cholerae serogroup O1 and O139 are the pathogens responsible for the global cholera epidemic. V. cholerae can settle in the water and spread via the fecal-oral route. Rapid and accurate monitoring of live V. cholerae in environmental water has become an important strategy to prevent and control cholera transmission. Conventional plate counting is widely used to detect viable bacteria but requires time and effort. Methods: This study aims to develop a new assay that combines triplex droplet digital PCR (ddPCR) with propidium monoazide (PMA) treatment for quantitatively detecting live V. cholerae O1/O139 and cholera enterotoxin. Specific primers and probes were designed according to the conserved regions of gene rfb O1, rfb O139, and ctxA. The amplification procedures and PMA treatment conditions were optimized. The specificity, sensitivity, and ability of PMA-ddPCR to detect viable bacteria-derived DNA were evaluated in simulated seawater samples. Results and Discussion: The results revealed that the optimal primer concentrations of rfb O1, rfb O139, and ctxA were 1 µM, while the concentrations of the three probes were 0.25, 0.25, and 0.4 µM, respectively. The best annealing temperature was 58°C to obtain the most accurate results. The optimal strategy for distinguishing dead and live bacteria from PMA treatment was incubation at the concentration of 20 µM for 15 min, followed by exposure to a 650-W halogen lamp for 20 min. In pure culture solutions, the limit of detection (LODs) of V. cholerae O1 and O139, and ctxA were 127.91, 120.23 CFU/mL, and 1.5 copies/reaction in PMA-triplex ddPCR, respectively, while the LODs of the three targets were 150.66, 147.57 CFU/mL, and 2 copies/reaction in seawater samples. The PMA-ddPCR sensitivity was about 10 times higher than that of PMA-qPCR. When detecting spiked seawater samples with live bacterial concentrations of 1.53 × 102 and 1.53 × 105 CFU/mL, the assay presented a higher sensitivity (100%, 16/16) than qPCR (50.00%, 8/16) and a perfect specificity (100%, 9/9). These results indicate that the developed PMA-triplex ddPCR is superior to the qPCR regarding sensitivity and specificity and can be used to rapidly detect viable toxigenic V. cholerae O1 and O139 in suspicious seawater samples.

7.
Neuroreport ; 34(11): 566-574, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37384937

RESUMO

Sleep deprivation impairs learning and memory. The neuroprotective function of ginsenoside Rg1 (Rg1) has been reported. This study aimed to investigate the alleviative effect and underlying mechanism of action of Rg1 on learning and memory deficits induced by sleep deprivation. Using 72 h of LED light to establish sleep deprivation model and treatment with Rg1-L (0.5 mg/ml), Rg1-H (1 mg/ml), and melatonin (positive control, 0.25 mg/ml), we investigated the behavioral performance of sleep deprivation zebrafish through 24 h autonomous movement tracking, a novel tank diving test, and a T-maze test. Brain injuries and ultrastructural changes were observed, brain water content was measured, and apoptotic events were analyzed using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining. The oxidation-associated biomarkers superoxide dismutase, catalase, and glutathione peroxidase activity and lipid peroxidation product malondialdehyde content were detected. Real-time PCR and western blotting were performed to detect the levels of apoptotic molecules (Bax, caspase-3, and Bcl-2). Rg1-treatment was observed to improve the behavioral performance of sleep-deprivation fish, alleviate brain impairment, and increase oxidative stress-related enzyme activity. Rg1 can effectively exhibit neuroprotective functions and improve learning and memory impairments caused by sleep deprivation, which could be mediated by the Bcl-2/Bax/caspase-3 apoptotic signaling pathway (see Supplementary Video Abstract, Supplemental digital content, http://links.lww.com/WNR/A702 which demonstrates our research objectives, introduction overview of Rg1, and main direction of future research).


Assuntos
Privação do Sono , Peixe-Zebra , Animais , Caspase 3 , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Proteína X Associada a bcl-2 , Apoptose , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Aprendizagem em Labirinto
8.
Clin Transl Med ; 13(3): e1130, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881552

RESUMO

BACKGROUND: Brugada syndrome (BrS) is causing sudden cardiac death (SCD) mainly at young age. Studying the underlying mechanisms associated with BrS type I electrocardiogram (ECG) changes in the presence of fever and roles of autophagy for BrS remains lacking. OBJECTIVES: We sought to study the pathogenic role of an SCN5A gene variant for BrS with fever-induced type 1 ECG phenotype. In addition, we studied the role of inflammation and autophagy in the pathomechanism of BrS. METHODS: Human-induced pluripotent stem cell (hiPSC) lines from a BrS patient harboring a pathogenic variant (c.3148G>A/p. Ala1050Thr) in SCN5A and two healthy donors (non-BrS) and a CRISPR/Cas9 site-corrected cell line (BrS-corr) were differentiated into cardiomyocytes (hiPSC-CMs) for the study. RESULTS: Reductions of Nav 1.5 expression, peak sodium channel current (INa ) and upstroke velocity (Vmax ) of action potentials with an increase in arrhythmic events were detected in BrS compared to non-BrS and BrS-corr cells. Increasing the cell culture temperature from 37 to 40°C (fever-like state) exacerbated the phenotypic changes in BrS cells. The fever-effects were enhanced by protein kinase A (PKA) inhibitor but reversed by PKA activator. Lipopolysaccharides (LPS) but not increased temperature up to 40°C enhanced the autophagy level in BrS-hiPSC-CMs by increasing reactive oxidative species and inhibiting PI3K/AKT signalling, and hence exacerbated the phenotypic changes. LPS enhanced high temperature-related effect on peak INa shown in BrS hiPSC-CMs. Effects of LPS and high temperature were not detected in non-BrS cells. CONCLUSIONS: The study demonstrated that the SCN5A variant (c.3148G>A/p.Ala1050Thr) caused loss-of-function of sodium channels and increased the channel sensitivity to high temperature and LPS challenge in hiPSC-CMs from a BrS cell line with this variant but not in two non-BrS hiPSC-CM lines. The results suggest that LPS may exacerbate BrS phenotype via enhancing autophagy, whereas fever may exacerbate BrS phenotype via inhibiting PKA-signalling in BrS cardiomyocytes with but probably not limited to this variant.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Síndrome de Brugada/genética , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Eletrocardiografia
9.
Food Chem Toxicol ; 171: 113532, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455683

RESUMO

The development of breast cancer is usually related to multiple pathways. A combinatory therapeutic system that combines drug/siRNA targeting several independent pathways has become an attractive approach to reduce the side effects and improve the efficiency of antitumor drugs. Herein, we designed a unique micelle-liposome hybrid nanoparticle platform for the combinatory administration of the cytotoxic drug DOX and Sphk2-siRNA for the treatment of multidrug-resistant (MDR) cancer. The synthesized lipid dioleoyl ethanolamine (DE) and pH-responsive DOPE were used to produce DOX/siRNA co-loaded hybrid nanoparticle (DOX-MC-siSphk2/ASLNP), with high drug-loading capacity and transfection efficacy. We demonstrated that simultaneous cellular endocytosis of DOX/siRNA induced by nanoparticles in MCF-7/ADR cells could acquire higher drug cytotoxicity and contribute to increasing the apoptosis of tumor cell. Furthermore, DOX-MC-siSphk2/ASLNP could significantly block the tumor growth of MDR breast cancer in xenograft mouse model with lower cardiotoxicity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Animais , Camundongos , Feminino , RNA Interferente Pequeno/farmacologia , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Células MCF-7 , Lipídeos
10.
Front Physiol ; 13: 1026884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523549

RESUMO

Transverse aortic constriction (TAC) is a frequently used model to investigate pressure overload-induced progressive heart failure (HF); however, there is considerable phenotypic variation among different mouse strains and even sub-strains. Moreover, less is known about the TAC model in ICR mice. Therefore, to determine the suitability of the ICR strain for TAC-induced HF research, we compared the effects of TAC on ICR and C57BL/6J mice at one, two and four weeks post-TAC via echocardiography, organ index, morphology, and histology. At the end of the study, behavior and gene expression patterns were assessed, and overall survival was monitored. Compared to the sham-operated mice, ICR and C57BL/6J mice displayed hypertrophic phenotypes with a significant increase in ventricle wall thickness, heart weight and ratio, and cross-sectional area of cardiomyocytes after a 2-week TAC exposure. In addition, ICR mice developed reduced systolic function and severe lung congestion 4 weeks post-TAC, whereas C57BL/6J did not. Besides, ICR mice demonstrated comparable survival, similar gene expression alteration but severer fibrotic remodeling and poor behavioral performance compared to the C57BL/6J mice. Our data demonstrated that ICR was quite sensitive to TAC-induced heart failure and can be an ideal research tool to investigate mechanisms and drug intervention for pressure overload-induced HF.

11.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955449

RESUMO

Aims: Some gene variants in the sodium channels, as well as calcium channels, have been associated with Brugada syndrome (BrS). However, the investigation of the human cellular phenotype and the use of drugs for BrS in presence of variant in the calcium channel subunit is still lacking. Objectives: The objective of this study was to establish a cellular model of BrS in the presence of a CACNB2 variant of uncertain significance (c.425C > T/p.S142F) using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and test drug effects using this model. Methods and results: This study recruited cells from a patient with Brugada syndrome (BrS) and recurrent ventricular fibrillation carrying a missense variant in CACNB2 as well as from three healthy independent persons. These cells (hiPSC-CMs) generated from skin biopsies of healthy persons and the BrS patient (BrS-hiPSC-CMs) as well as CRISPR/Cas9 corrected cells (isogenic control, site-variant corrected) were used for this study. The hiPSC-CMs from the BrS patient showed a significantly reduced L-type calcium channel current (ICa-L) compared with the healthy control hiPSC-CMs. The inactivation curve was shifted to a more positive potential and the recovery from inactivation was accelerated. The protein expression of CACNB2 of the hiPSC-CMs from the BrS-patient was significantly decreased compared with healthy hiPSC-CMs. Moreover, the correction of the CACNB2 site-variant rescued the changes seen in the hiPSC-CMs of the BrS patient to the normal state. These data indicate that the CACNB2 gene variant led to loss-of-function of L-type calcium channels in hiPSC-CMs from the BrS patient. Strikingly, arrhythmia events were more frequently detected in BrS-hiPSC-CMs. Bisoprolol (beta-blockers) at low concentration and quinidine decreased arrhythmic events. Conclusions: The CACNB2 variant (c.425C > T/p.S142F) causes a loss-of-function of L-type calcium channels and is pathogenic for this type of BrS. Bisoprolol and quinidine may be effective for treating BrS with this variant.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Arritmias Cardíacas/metabolismo , Bisoprolol/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Quinidina/farmacologia
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1211-1218, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34970905

RESUMO

Sleep is a complex physiological process of great significance to physical and mental health, and its research scope involves multiple disciplines. At present, the quantitative analysis of sleep mainly relies on the "gold standard" of polysomnography (PSG). However, PSG has great interference to the human body and cannot reflect the hemodynamic status of the brain. Functional near infrared spectroscopy (fNIRS) is used in sleep research, which can not only meet the demand of low interference to human body, but also reflect the hemodynamics of brain. Therefore, this paper has collected and sorted out the related literatures about fNIRS used in sleep research, concluding sleep staging research, clinical sleep monitoring research, fatigue detection research, etc. This paper provides a theoretical reference for scholars who will use fNIRS for fatigue and sleep related research in the future. Moreover, this article concludes the limitation of existing studies and points out the possible development direction of fNIRS for sleep research, in the hope of providing reference for the study of sleep and cerebral hemodynamics.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Hemodinâmica , Humanos , Polissonografia , Sono
15.
Front Pharmacol ; 12: 675003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025432

RESUMO

Aims: The short QT syndrome type 1 (SQT1) is linked to hERG channel mutations (e.g., N588K). Drug effects on hERG channel gating kinetics in SQT1-cells have not been investigated. Methods: This study used hiPSC-CMs of a healthy donor and a SQT1-patient carrying the N588K mutation and patch clamp to examine the drug effects on hERG channel gating kinetics. Results: Ajmaline, amiodarone, ivabradine, flecainide, quinidine, mexiletine and ranolazine inhibited the hERG channel current (IKr) less strongly in hiPSC-CMs from the SQTS1-patient (SQT1-hiPSC-CMs) comparing with cells from the healthy donor (donor-hiPSC-CMs). Quinidine and mexiletine reduced, but ajmaline, amiodarone, ivabradine and ranolazine increased the time to peak of IKr similarly in SQT1-hiPSC-CMs and donor-hiPSC-CMs. Although regarding the shift of activation and inactivation curves, tested drugs showed differential effects in donor- and SQT1-hiPSC-CMs, quinidine, ajmaline, ivabradine and mexiletine but not amiodarone, flecainide and ranolazine reduced the window current in SQT1-hiPSC-CMs. Quinidine, ajmaline, ivabradine and mexiletine differentially changed the time constant of recovery from inactivation, but all of them increased the time constant of deactivation in SQT1-hiPSC-CMs. Conclusion: The window current-reducing and deactivation-slowing effects may be important for the antiarrhythmic effect of ajmaline, ivabradine, quinidine and mexiletine in SQT1-cells. This information may be helpful for selecting drugs for treating SQT1-patients with hERG channel mutation.

16.
Europace ; 23(7): 1137-1148, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604602

RESUMO

AIMS: This study aimed to investigate possible roles and underlying mechanisms of alpha-adrenoceptor coupled signalling for the pathogenesis of Takotsubo syndrome (TTS). METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with a toxic concentration of epinephrine (Epi, 0.5 mM for 1 h) to mimic the setting of TTS. Patch-clamp technique, polymerase chain reaction (PCR) and Fluorescence-activated cell sorting (FACS) were employed for the study. High concentration Epi suppressed the depolarization velocity, prolonged duration of action potentials and induced arrhythmic events in hiPSC-CMs. The Epi effects were attenuated by an alpha-adrenoceptor blocker (phentolamine), suggesting involvement of alpha-adrenoceptor signalling in arrhythmogenesis related to QT interval prolongation in the setting of TTS. An alpha 1-adrenoceptor agonist (phenylephrine) but not an alpha 2-adrenoceptor agonist (clonidine) mimicked Epi effects. Epi enhanced ROS production, which could be attenuated by the alpha- adrenoceptor blocker. Treatment of cells with H2O2 (100 µM) mimicked the effects of Epi on action potentials and a reactive oxygen species (ROS)-blocker (N-acetyl-I-cysteine, 1 mM) prevented the Epi effects, indicating that the ROS signalling is involved in the alpha-adrenoceptor actions. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidases were involved in alpha 1-adrenoceptor signalling. A protein kinase C (PKC) blocker suppressed the effects of Epi, phenylephrine and ROS as well, implying that PKC participated in alpha 1-adrenoceptor signalling and acted as a downstream factor of ROS. The abnormal action potentials resulted from alpha 1-adrenoceptor activation-induced dysfunctions of ion channels including the voltage-dependent Na+ and L-type Ca2+ channels. CONCLUSIONS: Alpha 1-adrenoceptor signalling plays important roles for arrhythmogenesis of TTS. Alpha-adrenoceptor blockers might be clinically helpful for treating arrhythmias in patients with TTS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Potenciais de Ação , Catecolaminas/toxicidade , Humanos , Peróxido de Hidrogênio , Receptores Adrenérgicos alfa 1
17.
Front Cardiovasc Med ; 8: 777463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35187102

RESUMO

BACKGROUND: Previous studies suggested involvement of non-ß-adrenoceptors in the pathogenesis of Takotsubo cardiomyopathy (TTC). This study was designed to explore possible roles and underlying mechanisms of dopamine D1/D5 receptor coupled signaling in arrhythmogenesis of TTC. METHODS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were challenged by toxic concentration of epinephrine (Epi, 0.5 mM for 1 h) for mimicking the catecholamine excess in setting of TTC. Specific receptor blockers and activators were used to unveil roles of D1/D5 receptors. Patch clamp, qPCR, and FACS analyses were performed in the study. RESULTS: High concentration Epi and two dopamine D1/D5 receptor agonists [(±)-SKF 38393 and fenoldopam] reduced the depolarization velocity and prolonged the duration of action potentials (APs) and caused arrhythmic events in iPSC-CMs, suggesting involvement of dopamine D1/D5 receptor signaling in arrhythmogenesis associated with QT interval prolongation in the setting of TTC. (±)-SKF 38393 and fenoldopam enhanced the reactive oxygen species (ROS)-production. H2O2 (100 µM) recapitulated the effects of (±)-SKF 38393 and fenoldopam on APs and a ROS-blocker N-acetylcysteine (NAC, 1 mM) abolished the effects, suggesting that the ROS-signaling is involved in the dopamine D1/D5 receptor actions. A NADPH oxidases blocker and a PKA- or PKC-blocker suppressed the effects of the dopamine receptor agonist, implying that PKA, NADPH oxidases and PKC participated in dopamine D1/D5 receptor signaling. The abnormal APs resulted from dopamine D1/D5 receptor activation-induced dysfunctions of ion channels including the Na+ and L-type Ca2+ and IKr channels. CONCLUSIONS: Dopamine D1/D5 receptor signaling plays important roles for arrhythmogenesis of TTC. Dopamine D1/D5 receptor signaling in cardiomyocytes might be a potential target for treating arrhythmias in patients with TTC.

18.
J Clin Med ; 9(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050722

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare, inheritable cardiac disorder characterized by ventricular tachyarrhythmias, progressive loss of cardiomyocytes with fibrofatty replacement and sudden cardiac death. The exact underlying mechanisms are unclear. METHODS: This study investigated the possible roles of nucleoside diphosphate kinase B (NDPK-B) and SK4 channels in the arrhythmogenesis of ARVC by using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS: In hiPSC-CMs from a patient with ARVC, the expression levels of NDPK-B and SK4 channels were upregulated, the cell automaticity was increased and the occurrence rate of arrhythmic events was enhanced. Recombinant NDPK-B applied into hiPSC-CMs from either healthy donors or the patient enhanced SK4 channel current (ISK4), cell automaticity and the occurrence of arrhythmic events, whereas protein histidine phosphatase 1 (PHP-1), a counter actor of NDPK-B, prevented the NDPK-B effect. Application of PHP-1 alone or a SK4 channel blocker also reduced cell automaticity and arrhythmic events. CONCLUSION: This study demonstrated that the elevated NDPK-B expression, via activating SK4 channels, contributes to arrhythmogenesis in ARVC, and hence, NDPK-B may be a potential therapeutic target for treating arrhythmias in patients with ARVC.

19.
Pathol Oncol Res ; 26(3): 1725-1733, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31642036

RESUMO

CDGSH iron sulfur domain 2 (CISD2) is reported to be highly expressed in several cancers, but the role of it in neuroblastoma has not been identified yet. Here, for the first time, we show that CISD2 is involved in neuroblastoma tumorigenesis and regulates neuroblastoma cell proliferation and differentiation. We found that high CISD2 expression correlated significantly with poor outcome of neuroblastoma patients, as well as advanced neuroblastoma tumor stages. Knockdown of CISD2 greatly repressed neuroblastoma cell proliferation and tumorigenesis both in vitro and in vivo. Further investigation showed that CISD2 deficiency resulted in cell cycle arrest in G1 phase and induced cell differentiation of neuroblastoma. Several Cyclins and Cyclin-Dependent Kinases (CDKs) were down-regulated by CISD2 knockdown, indicating that CISD2 probably regulates cell cycle through those genes. Together, we provide evidence that CISD2 is an indicator for neuroblastoma patients prognosis and is indispensable for neuroblastoma cell proliferation and tumorigenesis; CISD2 deficiency can induce neuroblastoma cell cycle arrest and differentiation. These findings suggest that CISD2 could work as a novel and potential therapeutic target for neuroblastoma treatment.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Animais , Biomarcadores Tumorais , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
20.
Front Cell Dev Biol ; 7: 261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737628

RESUMO

BACKGROUND: Among rare channelopathies BrS patients are at high risk of sudden cardiac death (SCD). SCN5A mutations are found in a quarter of patients. Other rare gene mutations including SCN1B have been implicated to BrS. Studying the human cellular phenotype of BrS associated with rare gene mutation remains lacking. OBJECTIVES: We sought to study the cellular phenotype of BrS with the SCN1B gene variants using human-induced pluripotent stem cell (hiPSCs)-derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: A BrS patient suffering from recurrent syncope harboring a two variants (c.629T > C and c.637C > A) in SCN1B, which encodes the function-modifying sodium channel beta1 subunit, and three independent healthy subjects were recruited and their skin biopsies were used to generate hiPSCs, which were differentiated into cardiomyocytes (hiPSC-CMs) for studying the cellular electrophysiology. A significantly reduced peak and late sodium channel current (INa) and a shift of activation curve to more positive potential as well as a shift of inactivation curve to more negative potential were detected in hiPSC-CMs of the BrS patient, indicating that the SCN1B variants impact the function of sodium channels in cardiomyocytes. The reduced INa led to a reduction of amplitude (APA) and upstroke velocity (V max ) of action potentials. Ajmaline, a sodium channel blocker, showed a stronger effect on APA and Vmax in BrS cells as compared to cells from healthy donors. Furthermore, carbachol was able to increase arrhythmia events and the beating frequency in BrS. CONCLUSION: Our hiPSC-CMs from a BrS-patient with two variants in SCN1B recapitulated some key phenotypic features of BrS and can provide a platform for studies on BrS with SCN1B variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA