Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Colloid Interface Sci ; 661: 237-248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301462

RESUMO

Lithium ion capacitors (LICs) are a new generation of energy storage devices that combine the super energy storage capability of lithium ion batteries with the satisfactory power density of supercapacitors. The development of high-performance LICs still faces great challenges due to the unbalanced reaction kinetics at the anode and cathode. Therefore, it is an inevitable need to enhance the electron/ion transfer capability of the anode materials. In this paper, to obtain a superior-rate and high-capacity Ni3S2-based anode, highly conductive Ti3C2Tx MXene sheets were introduced to sever as the carrier of Ni3S2 nanoparticles and simultaneously an amorphous carbon layer which coats onto the surface of Ni3S2 nanoparticles was in-situ generated by the carbonization of dopamine reactant. The as-synthesized Ni3S2/Ti3C2Tx/C composite exhibits a high specific surface area (112.6 m2/g) because of the addition of Ti3C2Tx that can reduce the aggregation of Ni3S2 nanoparticles and the in-situ generated amorphous carbon layer that can suppress the growth of Ni3S2 nanoparticles. The Ni3S2/Ti3C2Tx/C anode possesses a remarkable reversible discharge specific capacity (626.0 mAh/g under 0.2 A/g current density), which increases to 1150.8 mAh/g after 400-cycle charge/discharge measurement at the same measurement condition indicating eminent cyclability, along with superior rate capability. To construct a superior-performance LIC device, a sterculiae lychnophorae derived porous carbon (SLPC) cathode with an average discharge specific capacity of 73.4 mAh/g@0.1A/g was prepared. The Ni3S2/Ti3C2Tx/C//SLPC LIC device with optimal cathode/anode mass ratio has a satisfactory energy density ranging from 32.8 to 119.1 Wh kg-1 at the corresponding power density of 8799.4 to 157.5 W kg-1, together with a prominent capacity retention (95.5 %@1 A/g after 10,000 cycles).

2.
Adv Mater ; 36(7): e2310800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019266

RESUMO

The best research-cell efficiency of perovskite solar cells (PSCs) is comparable with that of mature silicon solar cells (SSCs); However, the industrial development of PSCs lags far behind SSCs. PSC is a multiphase and multicomponent system, whose consequent interfacial energy loss and carrier loss seriously affect the performance and stability of devices. Here, by using spinodal decomposition, a spontaneous solid phase segregation process, in situ introduces a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface with interpenetrating structure in PSCs. The P3HT/PVK heterointerface tunes the energy alignment, thereby reducing the energy loss at the interface; The P3HT/PVK interpenetrating structure bridges a transport channel, thus decreasing the carrier loss at the interface. The simultaneous mitigation of energy and carrier losses by P3HT/PVK heterointerface enables n-i-p geometry device a power conversion efficiency of 24.53% (certified 23.94%) and excellent stability. These findings demonstrate an ingenious strategy to optimize the performance of PSCs by heterointerface via Spinodal decomposition.

3.
ACS Appl Mater Interfaces ; 15(30): 36468-36476, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37488666

RESUMO

The quality of the perovskite active layer directly impacts the photovoltaic performance of perovskite solar cells (PSCs). Unfortunately, perovskite films produced through solution methods often have a significant number of defects on their surface, which lead to a substantial degradation in the performance of devices. For this reason, a multifunctional additive 2-(trifluoromethyl) benzimidazole (TFMBI) is introduced into perovskite films. Based on the Lewis acid/base coordination principle, the TFMBI double site cooperatively passivates surface defects, inhibiting carrier non-radiative recombination. Simultaneously, the hydrophobic solid group (-CF3) of TFMBI covers the surface, establishing a moisture-oxygen barrier and improving the environmental stability of the devices. In consequence, the power conversion efficiency (PCE) of TFMBI-modified PSCs reached 23.16%, significantly higher than the pristine one with a PCE of 20.62%. Additionally, the unencapsulated target device retained 90.32% of its initial PCE even after being reserved in the air with a relative humidity of 20-30% for 60 days.

4.
Small Methods ; 5(12): e2101000, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928027

RESUMO

The 2D/3D composite structure possesses both the excellent stability of 2D perovskite and the excellent performance of 3D perovskite, which recently have attracted special attention. Different from the popular isopropanol, a novel additive solvent-polypropylene glycol bis (2-aminopropyl ether) (A-PPG) is introduced here to dissolve excess PbI2 and perovskite, and then reconstruct and in situ form the quasi-2D perovskite layer on 3D perovskite bulk. The lone electron pairs of the ether-oxygen and amino in A-PPG can form coordination bonds with Pb2+ . The introduction of A-PPG tunes the energy array of functional layers, passivates defects, and mitigates carrier nonradiative recombination. Consequently, the 2D/3D perovskite device exhibits a championship efficiency of 22.24% with a distinguished open-circuit voltage of 1.21 V (the thermodynamic limit of 1.30 V). Moreover, the 2D/3D device still maintains 90% of the original efficiency in the ambient atmosphere with a relative humidity of 30 ± 10% after 50 days.

5.
Front Chem ; 9: 688127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395377

RESUMO

Superabsorbent polymer (SAP) is a kind of functional macromolecule with super-high water absorption and retention properties, which attracts extensive research and has wide application, especially in the areas of hygiene and agriculture. With reference to the Web of Science database, the SAP research literature from 2000 to 2019 is reviewed both quantitatively and qualitatively. By examining research hotspots, top research clusters, the most influential works, the representative frontier literature, and key emerging research trends, a visual panorama of the continuously and significantly increasing SAP research over the past 2 decades was presented, and issues behind the sharp increase in the literature were discovered. The findings are as follows. The top ten keywords/hotspots headed by hydrogel highlight the academic attention on SAP properties and composites. The top ten research themes headed by clay-based composites which boast the longest duration and the strongest impact have revealed the academic preference for application rather than theoretical study. Academically influential scholars and research studies have been acknowledged, and the Wu group was at the forefront of the research; however, more statistically significant works have been less detected in the last 10 years despite the sharper increase in publications. Hydrogel, internal curing, and aerogel are both current advances and future directions.

6.
Small ; 16(47): e2004877, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33136349

RESUMO

High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.

7.
Adv Mater ; 32(7): e1904347, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880354

RESUMO

As one kind of promising next-generation photovoltaic devices, perovskite solar cells (PVSCs) have experienced unprecedented rapid growth in device performance over the past few years. However, the practical applications of PVSCs require much improved device long-term stability and performance, and internal defects and external humidity sensitivity are two key limitation need to be overcome. Here, gadolinium fluoride (GdF3 ) is added into perovskite precursor as a redox shuttle and growth-assist; meanwhile, aminobutanol vapor is used for Ostwald ripening in the formation of the perovskite layer. Consequently, a high-quality perovskite film with large grain size and few grain boundaries is obtained, resulting in the reduction of trap state density and carrier recombination. As a result, a power conversion efficiency of 21.21% is achieved with superior stability and negligible hysteresis.

8.
Research (Wash D C) ; 2019: 4049793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31912035

RESUMO

Tin oxide (SnO2), as electron transport material to substitute titanium oxide (TiO2) in perovskite solar cells (PSCs), has aroused wide interests. However, the performance of the PSCs based on SnO2 is still hard to compete with the TiO2-based devices. Herein, a novel strategy is designed to enhance the photovoltaic performance and long-term stability of PSCs by integrating rare-earth ions Ln3+ (Sc3+, Y3+, La3+) with SnO2 nanospheres as mesoporous scaffold. The doping of Ln promotes the formation of dense and large-sized perovskite crystals, which facilitate interfacial contact of electron transport layer/perovskite layer and improve charge transport dynamics. Ln dopant optimizes the energy level of perovskite layer, reduces the charge transport resistance, and mitigates the trap state density. As a result, the optimized mesoporous PSC achieves a champion power conversion efficiency (PCE) of 20.63% without hysteresis, while the undoped PSC obtains an efficiency of 19.01%. The investigation demonstrates that the rare-earth doping is low-cost and effective method to improve the photovoltaic performance of SnO2-based PSCs.

9.
Materials (Basel) ; 11(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126189

RESUMO

Co@NiSe2 electrode materials were synthesized via a simple hydrothermal method by using nickel foam in situ as the backbone and subsequently characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and a specific surface area analyzer. Results show that the Co@NiSe2 electrode exhibits a nanowire structure and grows uniformly on the nickel foam base. These features make the electrode show a relatively high specific surface area and electrical conductivity, and thus exhibit excellent electrochemical performance. The obtained electrode has a high specific capacitance of 3167.6 F·g-1 at a current density of 1 A·g-1. To enlarge the potential window and increase the energy density, an asymmetric supercapacitor was assembled by using a Co@NiSe2 electrode and activated carbon acting as positive and negative electrodes, respectively. The prepared asymmetrical supercapacitor functions stably under the potential window of 0⁻1.6 V. The asymmetric supercapacitor can deliver a high energy density of 50.0 Wh·kg-1 at a power density of 779.0 W·kg-1. Moreover, the prepared asymmetric supercapacitor exhibits a good rate performance and cycle stability.

10.
Chem Commun (Camb) ; 54(25): 3170-3173, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528055

RESUMO

Dispersible cadmium sulfide (CdS) nanoparticles are synthesized by a facile solvothermal reaction and are used for the first time as an electron transport layer (ETL) in inverted planar perovskite solar cells. The CdS ETL has superb electron extraction and transport properties, leading to a solar cell with light hysteresis and a high efficiency of 13.36%.

11.
RSC Adv ; 8(15): 7997-8006, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35542019

RESUMO

Cobalt telluride (CoTe) nanosheets as supercapacitor electrode materials are grown on carbon fiber paper (CFP) by a facile hydrothermal process. The CoTe electrode exhibits significant pseudo-capacitive properties with a highest C m of 622.8 F g-1 at 1 A g-1 and remarkable cycle stability. A new asymmetric supercapacitor (ASC) is assembled based on CoTe (positive electrode) and activated carbon (negative electrode), which can expand the operating voltage to as high as 1.6 V, and has a specific capacitance of 67.3 F g-1 with an energy density of 23.5 W h kg-1 at 1 A g-1. The performance of the ASC can be improved by introducing redox additive K4Fe(CN)6 into alkaline electrolyte (KOH). The results indicate that the ASC with K4Fe(CN)6 exhibits an ultrahigh specific capacitance of 192.1 F g-1 and an energy density of 67.0 W h kg-1, which is nearly a threefold increase over the ASC with pristine electrolyte.

12.
ChemSusChem ; 11(3): 619-628, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29266781

RESUMO

The electron-selective layer (ESL) plays a pivotal role in the performance of perovskite solar cells (PSCs). In this study, amorphous dispersible chromium oxide (Cr2 O3 ) nanosheets are synthesized by a facile solvothermal reaction, and a Cr2 O3 ESL is prepared by spin-coating Cr2 O3 ink on fluorine-doped tin oxide substrates without need for further annealing. By using Cr2 O3 as the electron-selective layer and Cs0.05 (MA0.17 FA0.83 )0.95 Pb(I0.83 Br0.17 )3 as the light-absorption layer, a planar hybrid perovskite solar cell is fabricated. The spin-coating speed is optimized, the structure and morphology of samples are observed, the photoelectrical properties of ESLs are characterized, and the photovoltaic behaviors of devices are measured. Results show that the as-prepared Cr2 O3 layer has high optical transmittance and superb electron extraction and carrier transport property. The planar hybrid PSC based on the optimized Cr2 O3 ESL achieves a power conversion efficiency of 16.23 %, which is comparable to devices based on a conventional high-temperature-calcined TiO2 ESL. These results demonstrate a low-cost and facile route to highly effective perovskite solar cells.


Assuntos
Compostos de Cálcio/química , Compostos de Cromo/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química , Técnicas Eletroquímicas , Elétrons , Flúor/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Compostos de Estanho/química , Difração de Raios X
13.
Chem Soc Rev ; 46(19): 5975-6023, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28840218

RESUMO

Dye-sensitized solar cells (DSSCs) are regarded as prospective solar cells for the next generation of photovoltaic technologies and have become research hotspots in the PV field. The counter electrode, as a crucial component of DSSCs, collects electrons from the external circuit and catalyzes the redox reduction in the electrolyte, which has a significant influence on the photovoltaic performance, long-term stability and cost of the devices. Solar cells, dye-sensitized solar cells, as well as the structure, principle, preparation and characterization of counter electrodes are mentioned in the introduction section. The next six sections discuss the counter electrodes based on transparency and flexibility, metals and alloys, carbon materials, conductive polymers, transition metal compounds, and hybrids, respectively. The special features and performance, advantages and disadvantages, preparation, characterization, mechanisms, important events and development histories of various counter electrodes are presented. In the eighth section, the development of counter electrodes is summarized with an outlook. This article panoramically reviews the counter electrodes in DSSCs, which is of great significance for enhancing the development levels of DSSCs and other photoelectrochemical devices.

14.
Sci Rep ; 7: 44603, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303938

RESUMO

The organic-inorganic lead halide perovskite layer is a crucial factor for the high performance perovskite solar cell (PSC). We introduce CH3NH3Br in the precursor solution to prepare CH3NH3PbI3-xBrx hybrid perovskite, and an uniform perovskite layer with improved crystallinity and apparent grain contour is obtained, resulting in the significant improvement of photovoltaic performance of PSCs. The effects of CH3NH3Br on the perovskite morphology, crystallinity, absorption property, charge carrier dynamics and device characteristics are discussed, and the improvement of open circuit voltage of the device depended on Br doping is confirmed. Based on above, the device based on CH3NH3PbI2.86Br0.14 exhibits a champion power conversion efficiency (PCE) of 18.02%. This study represents an efficient method for high-performance perovskite solar cell by modulating CH3NH3PbI3-xBrx film.

15.
Nanoscale ; 7(48): 20539-46, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26585357

RESUMO

A compact TiO(2) layer is crucial to achieve high-efficiency perovskite solar cells. In this study, we developed a facile, low-cost and efficient method to fabricate a pinhole-free and ultrathin blocking layer based on highly crystallized TiO(2) quantum dots (QDs) with an average diameter of 3.6 nm. The surface morphology of the blocking layer and the photoelectric performance of the perovskite solar cells were investigated by spin-coating with three different materials: colloidal TiO(2) QDs, titanium precursor solution, and aqueous TiCl(4). Among these three treatments, the perovskite solar cell based on the TiO(2) QD compact layer offered the highest power conversion efficiency (PCE) of 16.97% with a photocurrent density of 22.48 mA cm(-2), a photovoltage of 1.063 V and a fill factor of 0.71. The enhancement of PCE mainly stems from the small series resistance and the large shunt resistance of the TiO(2) QD layer.

16.
17.
Sci Rep ; 4: 4028, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24504117

RESUMO

Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ~24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.

18.
Sci Rep ; 3: 2058, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23792787

RESUMO

In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu³âº) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu³âº transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu³âº elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu³âº/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu³âº doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells.

19.
Sci Rep ; 3: 1283, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412470

RESUMO

Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO(2)/P3HT) heterojuction. In this solar cell, TiO(2) is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm(-2), the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells.

20.
Chemphyschem ; 14(2): 394-9, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23303585

RESUMO

In order to achieve pesudocapacitive performance of single-wall carbon nanotube (SWCNT) electrodes, a high-efficient and reversible redox strategy utilizing a redox-mediated electrolyte for SWCNT-based supercapacitors is reported. In this novel redox-mediated electrolyte, the single-electrode specific capacitance of the supercapacitor is heightened four times, reaching C=162.66 F g(-1) at 1 A g(-1). The quick charge-discharge ability of the supercapacitor is also enhanced, and the relaxation time is as low as 0.58 s. Furthermore, the supercapacitor shows an excellent cycling performance of 96.51 % retention after 4000 cycles. The remarkable results presented here illustrate that the redox strategy is a facile and straightforward approach to improve the performances of SWCNT electrodes.


Assuntos
Nanotubos de Carbono/química , Eletrodos , Eletrólitos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA