RESUMO
Baijiu is popular with a long history and balanced flavor. Flavor type is the most widely used classification mode for Baijiu. However, the evolutionary relationships of Baijiu flavor types and the differential markers between flavor types are still unclear, significantly impacting the development of the Baijiu industry. In this study, a total of 319 trace components were identified using gas chromatography-olfactometry-mass spectrometry and gas chromatography-mass spectrometry. Among them, 91 trace components with high odor active values or taste active values were recognized as flavor components. Then random forests were conducted to screen differential markers between the derived and basic flavor types, while a principal component analysis assessed their effectiveness in distinguishing the flavor types of Baijiu. Finally, 19 differential markers (including 3-methylbutyric acid, pentanoic acid, 2-butanol, 2,3-butanediol, ethyl pro-panoate, isobutyl acetate, ethyl butanoate, ethyl hexanoate, ethyl heptanoate, ethyl lactate, ethyl 2-hydroxy butanoate, isopentyl hexanoate, ethyl nonanoate, isopropyl myristate, ethyl tetradecanoate, ethyl benzoate, 2,4-di-t-butylphenol, 2-methylbutanal and 3-octanone) were screened and proven to effectively reveal the evolution of Baijiu flavor types; these were further verified as key differential markers using addition tests and a correlation analysis.
RESUMO
Due to differences in raw materials and production processes, different spirits exhibit various flavor even if undergo distillation operation. In this study, sensory analysis could clearly distinguish 5 types spirits, and had been validated through quantitative targeted flavoromics analysis. Consequently, 44 potential differential markers between 5 types spirits were screened. Among, 34 definite differential markers were further confirmed to be highly correlated with target sensory attributes and could effectively distinguish types of spirits. Ultimately, 14 key differential markers (including 2-methylbutane, linalool, acetaldehyde, d-limonene, ß-myrcene, phenylethyl alcohol, phenethyl acetate, heptyl formate, ethyl octanoate, ethyl decanoate, ethyl pentanoate, ethyl hexanoate, hexanoic acid, and ethyl hexadecanoate) could reveal the chemical sources of spirit sensory and serve as targets for identifying different types of spirits. Overall, the results of flavoromic characterization of 5 types spirits provided a significant step forwards in understanding of differentiation of spirits by sensory coupled with quantitative, and statistical analysis.
RESUMO
A new convenient method for identifying colorant compounds (CCs) in food matrices was developed using high-performance liquid chromatography with a diode array detector and quadrupole-time-of-flight mass spectrometer (HPLC-DAD-Q/TOF-MS) combined with theoretical calculations. A model sample containing three typical CCs was completely separated via HPLC-DAD. The obtained 3D ultraviolet-visible (UV-vis) spectra revealed the maximum absorption wavelengths (MAWs) of all CCs (yellow, 430 nm; red, 520 nm; blue, 620 nm) in the range of 400-800 nm, and their colors were determined based on their MAWs. Temporary structures of the CCs were obtained using Q/TOF-MS analysis. Theoretical calculations were then performed to obtain the theoretical MAWs and colors of the CCs according to their calculated UV-vis spectra based on temporary structures. The structures of the CCs were confirmed without the need for authoritative standards by comparing the consistency between their experimental and theoretical MAWs and colors. This method is particularly suitable for identifying CCs or compounds with UV-Vis absorption, including new compounds, compounds for which standards are difficult to obtain, and known compounds without reporting relevant molecular information.
RESUMO
Objectives: To develop and validate a deep learning (DL) based automatic segmentation and classification system to classify benign and malignant BI-RADS 4 lesions imaged with ABVS. Methods: From May to December 2020, patients with BI-RADS 4 lesions from Centre 1 and Centre 2 were retrospectively enrolled and divided into a training set (Centre 1) and an independent test set (Centre 2). All included patients underwent an ABVS examination within one week before the biopsy. A two-stage DL framework consisting of an automatic segmentation module and an automatic classification module was developed. The preprocessed ABVS images were input into the segmentation module for BI-RADS 4 lesion segmentation. The classification model was constructed to extract features and output the probability of malignancy. The diagnostic performances among different ABVS views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3, ResNet 50, and MobileNet) were compared. Results: A total of 251 BI-RADS 4 lesions from 216 patients were included (178 in the training set and 73 in the independent test set). The average Dice coefficient, precision, and recall of the segmentation module in the test set were 0.817 ± 0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on multiview ABVS images and Inception-v3 achieved the best performance, with an AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953), 82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set. Conclusions: The developed multiview DL model enables automatic segmentation and classification of BI-RADS 4 lesions in ABVS images.
RESUMO
Copper (Cu) is a common heavy metal and a hazardous environmental pollutant. Emerging epidemiological evidence suggests that Cu exposure is associated with female infertility, especially ovarian dysfunction. However, the mechanisms underlying ovarian toxicity remain poorly understood. Granulosa cells play crucial roles in follicle development and are the main target cells of environmental pollutants for ovarian toxicity. In this study, we investigated the effects of Cu exposure on human granulosa (KGN) cells by using cell biology and metabolomics methods, and explored the molecular mechanisms of Cu-induced cytotoxicity. We found that Cu reduced cell viability in a dose- and time-dependent manner. Then, metabolomic analyses led to the identification of 279, 368 and 466 differentially expressed metabolites (DEMs) in KGN cells exposed to 10, 60 and 240⯵M Cu, respectively. Pathway enrichment analysis revealed that high Cu led to disturbances of glutathione metabolism, nucleotide metabolism, glycerophospholipid and ether lipid metabolism. Using cell biological assays, we found that exposure to high Cu significantly decreased the GSH/GSSG ratio and altered the activities of the antioxidant enzymes SOD and CAT. Exposure to high Cu significantly increased the level of mitochondrial ROS. These findings further supported the results revealed by metabolomic analysis and provided clues for elucidating the mechanism by which Cu interferes with the development of ovarian follicles.
Assuntos
Sobrevivência Celular , Cobre , Células da Granulosa , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Cobre/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismoRESUMO
Concerns regarding the hazard of the carcinogenic ethyl carbamate (EC) have driven attempts to exploit efficient, timely, straightforward, and economic assays for warning early food safety. Here, we proposed a novel molecularly imprinted polymer Co@MOF-MIP, with a high peroxidase (POD)-like activity and a bright blue fluorescence emission, to develop a versatile visual assay for colorimetric, fluorescent, and photothermal trimodal detection and logic gate outputting of EC. Briefly, the POD-like activity of Co@MOF-MIP made it to decompose H2O2 into ·OH for oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue oxTMB, resulting in a 660 nm irradiated photothermal effect and bursting the blue fluorescence of Co@MOF-MIP via inner filter effect, observing a decreased fluorescence signal together with an increased colorimetric and 660 nm irradiated photothermal signals. However, EC could specifically fill the imprinted cavities of Co@MOF-MIP to block the catalytic substrates TMB and H2O2 out of Co@MOF-MIP for further reacting with the inside catalytic center of Co2+, resulting in the transformation suppressing of TMB into oxTMB, yielding an EC concentration-dependent trimodal responses in fluorescence signal enhancement, colorimetric, and 660 nm irradiated photothermal signal decreases. Assisted by the portable devices such as smartphones and hand-held thermal imagers, a visual onsite portable trimodal analytical platform was proposed for EC fast and accurate detection with the low detection limits of 1.64, 1.24, and 1.78 µg/L in colorimetric, fluorescent, and photothermal modes, respectively. Interestingly, these reactive events could be programmed by the classical Boolean logic gate analysis to offer a novel promising avenue for the big data Internet of Things monitoring and warning early residual EC in a more intelligent, dynamical, fast, and accurate manner, safeguarding food safety.
Assuntos
Colorimetria , Uretana , Uretana/química , Impressão Molecular , Estruturas Metalorgânicas/química , Cobalto/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Polímeros Molecularmente Impressos/química , Benzidinas/químicaRESUMO
Light-flavor Baijiu (LFB) is widely cherished for its flavor. This study identified the thresholds of 14 aroma compounds in a 52% ethanol-water matrix and conducted a comprehensive analysis of the interactions among key aroma compounds in LFB using the Feller additive model and odor activity values approach. Among them, the interactions of ß-damascenone with ester and alcohol compounds were primarily promotive, while the interaction with acid compounds was predominantly masking. Furthermore, for the first time, the electroencephalogram (EEG) technology was used to characterize the interactions between aroma compounds. The results showed that the brain activity in the alpha frequency band demonstrated heightened olfactory sensitivity. The EEG could not only display the additive effect of odor intensity but also reflect the differences in aroma similarity between different odors. This study demonstrated that the EEG can serve as an effective tool for olfactory assessment.
Assuntos
Eletroencefalografia , Aromatizantes , Odorantes , Olfato , Odorantes/análise , Humanos , Masculino , Adulto , Aromatizantes/química , Feminino , Compostos Orgânicos Voláteis/química , Adulto Jovem , Paladar , Percepção Olfatória , Encéfalo/fisiologiaRESUMO
Bisphenol A (BPA) is a synthetic chemical primarily utilized in the manufacturing of polycarbonate plastics and epoxy resins that are present in various consumer products. While the BPA impacts on female reproductive toxicity have been widely investigated, very little is currently identified about the mixed toxicity of BPA and bisphenol AF (BPAF), another common BPA derivative that is used in many industrial applications. In this study, we assessed the effect of co-exposure of BPA (30 and 50 µM) and BPAF (3 and 5 µM) on mitochondrial dysfunction in human granulosa cells (KGN cells) for 24 h. Our results exhibited that high-concentration bisphenol individual or their mixture exposure of KGN cells induced significant mitochondrial dysfunction by reducing mitochondrial mass, reducing ATP production, and damaging the mitochondrial respiratory chain. In addition, we found that the combination of BPA and BPAF significantly induced mitochondrial stress by increasing calcium levels and the production of ROS in mitochondria. Mitochondrial stress induced by BPA and BPAF was determined to be a mechanism that promoted cell apoptosis after pretreating the cells with the mitochondrial-targeted antioxidant and the calcium chelator. Our results provide novel evidence of the cytotoxicity of mixtures of different bisphenol compounds.
Assuntos
Apoptose , Compostos Benzidrílicos , Células da Granulosa , Mitocôndrias , Fenóis , Espécies Reativas de Oxigênio , Fenóis/toxicidade , Humanos , Compostos Benzidrílicos/toxicidade , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Apoptose/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Linhagem Celular , Trifosfato de Adenosina/metabolismo , FluorocarbonosRESUMO
Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.
Assuntos
Apoptose , Compostos Benzidrílicos , Células da Granulosa , Mitocôndrias , Fenóis , Espécies Reativas de Oxigênio , Humanos , Fenóis/toxicidade , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Feminino , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Sulfonas/toxicidade , Sulfonas/química , Linhagem Celular , Cálcio/metabolismo , FluorocarbonosRESUMO
This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.
Assuntos
Bebidas Alcoólicas , Carvão Vegetal , Hidróxidos , Compostos de Potássio , Bebidas Alcoólicas/análise , Carvão Vegetal/química , Humanos , Hidróxidos/química , Compostos de Potássio/química , Adsorção , Paladar , Resíduos/análise , Aromatizantes/química , Grão Comestível/química , Odorantes/análise , Fatores de Risco , Masculino , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
The volatile compounds in Dacha liquor (DL) and Ercha liquor (EL) from Niulanshan Erguotou Baijiu (NEB) were analyzed. The results demonstrated that a total of 34 odorants were identified. For the first time, the products of different brewing stages were analyzed using temperature-programmed headspace gas chromatography-ion mobility spectrometry (TP-HS-GC-IMS). The 3D fingerprint obtained revealed that the compounds exhibited different change patterns during the brewing process. Furthermore, the results of principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) revealed that hexanal, 3-hydroxy-2-butanone, trans-2-pentenal, and ethyl hexanoate could be used to distinguish different types of fermented grains; and hexanal, 1-pentanol, methyl isovalerate, isoamyl acetate, 3-hydroxy-2-butanone, ethyl hexanoate, ethyl acetate, ethyl 2-methylbutanoate, and ethyl pentanoate could be used to distinguish different types of distilled spirits. This study serves as a useful reference for enhancing quality control measures in the production of NEB.
RESUMO
By collecting real samples throughout the entire production process and employing chemometrics, metabolomics, and modern separation omic techniques, it unveiled the patterns of pesticide transfer during solid-state fermentation. The results indicated that 12 types of pesticide residues were prevalent during baijiu production, with organochlorine and carbamate pesticides being the most abundant in raw materials. After fermentation, organochlorine pesticides and pyrethroid pesticides exhibited higher content, while carbamate pesticides dominated in the final product. The pathways for pesticide input and elimination were identified, and the intricate mechanisms underlying these changes were further elucidated. Additionally, key control points were defined to facilitate targeted monitoring. The results indicated that pesticide residue primarily originates from raw materials and Daqu, whereas both solid-state fermentation and distillation processes were effective in reducing pesticide residues. The study offers valuable guidance for establishing pesticide residue standards in the context of baijiu production.
Assuntos
Fermentação , Metabolômica , Resíduos de Praguicidas , Resíduos de Praguicidas/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , QuimiometriaRESUMO
It is of great significance to develop a simple and rapid electrochemical sensor for simultaneous determination of heavy metal ions (HMIs) in Baijiu by using new nanomaterials. Here, graphene (GR) was utilized to combine with covalent organic frameworks (COFs) that was synthesized via the aldehyde-amine condensation between 2, 5-dimethoxyterephthalaldehyde (DMTP) and 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) to prepare a new GR/COFDPTB/GCE sensor for electrochemical sensing multiple HMIs. Compared with the glass carbon electrode (GCE), GR/GCE and COFDPTB/GCE, the developed sensor exhibited excellent electrochemical analysis ability for the simultaneous detection of Cd2+, Pb2+, and Cu2+ owing to the synergistically increased the specific surface area, the periodic porous network and plenty of effective binding sites, as well as the enhanced conductivity. Under the optimized experimental parameters, the proposed sensor showed good linearity range of 0.1-25 µM for Cd2+, and both 0.1-11 µM for Pb2+ and Cu2+ with the detection limits of Cd2+, Pb2+, and Cu2+ being 0.011 µM, 8.747 nM, and 6.373 nM, respectively. Besides, the designed sensor was successfully applied to the simultaneous detection of the three HMIs in Baijiu samples, suggesting its good practical application performance and a new method for the rapid detection of HMIs being expended.
RESUMO
Huangshui polysaccharides (HSPs) have attracted extensive attention recently for their biological activity and physicochemical property. This research investigated the extraction, structural characterization, and prebiotic activity of three different HSPs (HSP40-0, HSP60-0, and HSP80-0) in vitro to reveal the scientific support for the high-value utilization of Huangshui. HSPs were heteropolysaccharide with diverse structures and surface morphologies. Comprehensive analysis was conducted through 16S rRNA gene sequencing and metabolite profiling techniques, and results showed that HSPs had different potentials to regulate the gut microbiota due to their different structures; for instance, both HSP40-0 and HSP80-0 could notably increase the relative abundance of Bacteroidota, whereas HSP60-0 could increase the relative abundance of Phascolarctobacterium. In addition, HSPs upregulated beneficial differential metabolites, especially short-chain fatty acids (SCFAs). Fermentation products containing these metabolites exhibited anti-inflammatory effects on LPS-treated Caco-2 cells. This study will provide reference for exploring the relationship between the natural polysaccharide structure and the prebiotic activity and widen the application of Huangshui.
Assuntos
Microbioma Gastrointestinal , Humanos , Fermentação , RNA Ribossômico 16S , Células CACO-2 , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismoRESUMO
Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 µg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 µg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 µmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.
Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/química , Células HEK293 , Furanos , Olfato , Odorantes/análiseRESUMO
Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.
Assuntos
Destilação , Frutas , Frutas/química , Destilação/métodosRESUMO
Epidemiological and clinical data have demonstrated that exposure to cadmium (Cd), a toxic heavy metal, is associated with an increased risk of female infertility. Granulosa cells, the main somatic cells comprising ovarian follicles, are one of the main targets of Cd in the ovaries. However, the mechanism by which Cd induces cytotoxicity in granulosa cells has not been fully elucidated. In this study, we exposed human ovarian granulosa cells (KGN cells) to Cd and conducted in vitro cell experiments and multi-omics (metabolomics and transcriptomics) methods to elucidate these mechanisms. Cd exposure was found to not only induce the apoptosis of the KGN cells but also further reduced mitochondrial function by decreasing mitochondrial membrane potential, ATP production, and respiratory chain complex activity as well as increasing mitochondrial reactive oxygen species (ROS) production. A total of 443 differentially expressed metabolites (160 upregulated and 283 downregulated) and 5200 differentially expressed genes (4634 upregulated and 566 downregulated) were observed in the Cd exposed-cells. The multi-omics data showed that Cd interfered with citric acid cycle (TCA cycle), amino acid (including alanine, glycine, serine, threonine, arginine, and proline) metabolism, and calcium signaling. These findings help to better elucidate the potential toxicity mechanisms of Cd on granulosa cells and the ovary.
Assuntos
Cádmio , Multiômica , Humanos , Feminino , Cádmio/toxicidade , Cádmio/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano , Ovário/metabolismo , ApoptoseRESUMO
This study successfully constructed a novel multifunctional bio-adsorbent using sodium alginate (SA), ferroferric oxide (FFO), and carboxymethyl Huangshui polysaccharide (CMHSP) with rapid separation, pH sensitivity, efficient adsorption, and reusability for enhancing the removal of methylene blue (MB) in wastewater. FTIR, XRD, SEM, and VSM results indicated CMHSP improved the porosity of the hydrogel spheres, thus significantly enhancing the MB adsorption capacity with the rate-limiting controlled by chemical adsorption, intraparticle diffusion, and film diffusion. The maximum adsorption capacity obtained from Langmuir model of SA-FFO-CMHSP (186.57 mg/g) was obviously higher than that of SA-FFO (178.82 mg/g). Thermodynamic results showed that the MB adsorption process was endothermic, spontaneous, and favorable, and physical adsorption was dominant. Remarkably, MB adsorption maintained 87% â¼ 95% of the initial after four adsorption-desorption cycles, and proper carboxymethylation was conducive to MB adsorption over a broader range pH. These findings provided reference for designing new efficient bio-adsorbents and the recyclable utilization of Huangshui by-products, which was of great value.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Alginatos , Azul de Metileno , Adsorção , Hidrogéis , Corantes , Purificação da Água/métodos , Cinética , Concentração de Íons de HidrogênioRESUMO
This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.
Assuntos
Produtos Fermentados do Leite , Lactobacillus plantarum , Probióticos , Animais , Iogurte/microbiologia , Lactobacillus plantarum/fisiologia , LactobacillaceaeRESUMO
Huangshui polysaccharide (HSP) has attracted more and more interest due to its potential health benefits. Despite being an excellent source for the preparation of oligosaccharides, there are currently no relevant research reports on HSP. In the present study, a novel oligosaccharide (HSO) with a molecular weight of 1791 Da and a degree of polymerization of 11 was prepared through enzymatic degradation of crude HSP (cHSP). Methylation and NMR analyses revealed that the main chain of HSO was (1 â 4)-α-d-glucose with two O-6-linked branched chains. Morphological observations indicated that HSO exhibited smooth surface with lamellar and filamentary structure, and the glycan size ranged from 0.03 to 0.20 µm. Notably, HSO significantly promoted the proliferation of Bifidobacterium, Bacteroides, and Phascolarctobacterium, thereby making positive alterations in intestinal microbiota composition. Moreover, HSO markedly increased the content of short-chain fatty acids during in vitro fermentation. Metabolomics analysis illustrated the important metabolic pathways primarily involving glucose metabolism, amino acid metabolism, and fatty acid metabolism.