RESUMO
The prolonged utilization of copper (Cu)-containing fungicides results in Cu accumulation and affects soil ecological health. Thus, a pot experiment was conducted using Citrus reticulata cv. Shatangju with five Cu levels (38, 108, 178, 318, and 388 mg kg-1) to evaluate the impacts of the soil microbial processes, chemistry properties, and citrus growth. These results revealed that, with the soil Cu levels increased, the soil total Cu (TCu), available Cu (ACu), organic matter (SOM), available potassium (AK), and pH increased while the soil available phosphorus (AP) and alkali-hydrolyzable nitrogen (AN) decreased. Moreover, the soil extracellular enzyme activities related to C and P metabolism decreased while the enzymes related to N metabolism increased, and the expression of soil genes involved in C, N, and P cycling was regulated. Moreover, it was observed that tolerant microorganisms (e.g., p_Proteobacteria, p_Actinobacteria, g_Lysobacter, g_Sphingobium, f_Aspergillaceae, and g_Penicillium) were enriched but sensitive taxa (p_Myxococcota) were suppressed in the citrus rhizosphere. The citrus biomass was mainly positively correlated with soil AN and AP; plant N and P were mainly positively correlated with soil AP, AN, and acid phosphatase (ACP); and plant K was mainly negatively related with soil ß-glucosidase (ßG) and positively related with the soil fungal Shannon index. The dominant bacterial taxa p_Actinobacteriota presented positively correlated with the plant biomass and plant N, P, and K and was negatively correlated with plant Cu. The dominant fungal taxa p_Ascomycota was positively related to plant Cu but negatively with the plant biomass and plant N, P, and K. Notably, arbuscular mycorrhizal fungi (p_Glomeromycota) were positively related with plant P below soil Cu 108 mg kg-1, and pathogenic fungi (p_Mortierellomycota) was negatively correlated with plant K above soil Cu 178 mg kg-1. These findings provided a new perspective on soil microbes and chemistry properties and the healthy development of the citrus industry at increasing soil Cu levels.
RESUMO
Citrus reticulata Blanco 'Orah' is grown throughout southern China and provides enormous economic value. However, the agricultural industry has suffered substantial losses during recent years due to marbled fruit disease. The present study focuses on the soil bacterial communities associated with marbled fruit in 'Orah'. The agronomic traits and microbiomes of plants with normal and marbled fruit from three different orchards were compared. No significant differences were found in agronomic traits between the groups, except for higher fruit yields and higher quality of fruits in normal fruit group. Additionally, a total of 2,106,050 16S rRNA gene sequences were generated via the NovoSeq 6000. The alpha diversity index (including the Shannon and Simpson indices), Bray-Curtis similarity, and principal component analyses indicated no significant differences in microbiome diversity between normal and marbled fruit groups. For the healthy 'Orah', the most abundant associated phyla were Bacteroidetes, Firmicutes, and Proteobacteria. In comparison, Burkholderiaceae and Acidobacteria were the most abundant taxa with the marbled fruit group. In addition, the family Xanthomonadaceae and the genus Candidatus Nitrosotalea were prevalent with this group. Analysis using the Kyoto Encyclopedia of Genes and Genomes pathways showed that several pathways related to metabolism significantly differed between the groups. Thus, the present study provides valuable information regarding soil bacterial communities associated with marbled fruit in 'Orah'.
RESUMO
Citrus fruits exhibit vivid color and are favored extensively. However, the biochemical and molecular mechanism of Citrus Reticulata Blanco fruits coloring, especially the effect of transplantation on fruits coloring, is unclear. Herein, RNA-Seq and carotenoids profiling were applied to investigate the effect of transplantation on Orah mandarin fruits coloring. Transplantation induces fruit color shallowing, Ca2+ and ACC level declining and IAA level increasing. Transplantation induced variation in fruit skin and pulp carotenoids, mainly ß-citraurin as one of the important pigments of citrus peel. 2253 up-regulated genes, 1103 down-regulated genes in skin and 815 up-regulated genes, 534 down-regulated genes in pulp of transplanted tree fruits were identified by RNA-Seq. The DEGs involved hormone signal, carotenoids biosynthesis and TFs such as MYB and bHLH family TFs. The carotenoid cleavage dioxygenase gene (Ciclev10028113m.g) is positively correlated with ß-citraurin and regulated directly and/or indirectly by MYB1R1, PIF4, ACC and IAA. Integrative analyses revealed potential molecular insights into Orah mandarin peel color variation during transplantation.
Assuntos
Citrus , Carotenoides/análise , Citrus/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , TranscriptomaRESUMO
BACKGROUND AND PURPOSE: Autophagy is the main protective mechanism against aging in podocytes, which are terminally differentiated cells that have a very limited capacity for mitosis and self-renewal. Here, a streptozotocin-induced DN C57BL/6 mouse model was used to investigate the effects of puerarin on the modulation of autophagy under conditions associated with endoplasmic reticulum stress (ERS). In addition, this study aimed to identify the potential underlying molecular mechanisms. METHODS AND RESULTS: DN C57BL/6 mouse model was induced by streptozotocin (150 mg/kg) injection. The mice were administered rapamycin and puerarin, respectively, daily for up to 8 weeks. After the serum and kidney samples were collected, the fasting blood glucose (FBG), parameters of renal function, histomorphology, and the podocyte functional proteins were analyzed. Moreover, the autophagy markers and the expressions of PERK/ATF4 pathway were studied in kidney. Results found that the FBG level in DN mice was significantly higher than in normal mice. Compared with DN model mice, puerarin-treated mice showed an increased expression of podocyte functional proteins, including nephrin, podocin, and podocalyxin. Furthermore, the pathology and structure alterations were improved by treatment with rapamycin and puerarin compared with the DN control. The results indicated an elevated level of autophagy in rapamycin and puerarin groups compared with the DN model, as demonstrated by the upregulated expression of autophagy markers Beclin-1, LC3II, and Atg5, and downregulated p62 expression. In addition, the levels of PERK, eIF2α, and ATF4 were reduced in the DN model, which was partially, but significantly, prevented by rapamycin and puerarin. CONCLUSION: This study emphasizes the renal-protective effects of puerarin in DN mice, particularly in the modulation of autophagy under ERS conditions, which may be associated with activation of the PERK/eIF2α/ATF4 signaling pathway. Therefore, PERK may be a potential target for DN treatment.
RESUMO
This study investigated the effects of dietary essential oils (EOs) on intestinal microbial composition and metabolic profiles in weaned piglets. The piglets were fed the same basal diet supplemented with EOs (EO) or without EOs (Con) in the current study. The results showed that the body weight gain was significantly increased, while the diarrhea incidence was significantly reduced in the EO group. In addition, EOs could modify the intestinal microbial composition of weaned piglets. The relative abundances of some beneficial bacterial species such as Bacilli, Lactobacillales, Streptococcaceae, and Veillonellaceae were significantly increased in the EO group. Metabolomics analysis indicated that protein biosynthesis, amino acid metabolism, and lipid metabolism were enriched in the EO group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Taken together, this study indicated that dietary EOs not only altered microbial composition and function but modulated the microbial metabolic profiles in the colon, which might help us understand EOs' beneficial effects on intestinal health of weaned piglets.
RESUMO
A series of new coumarin-dithiocarbamate hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's Disease (AD). The biological assays indicated that most of them showed potent inhibition and excellent selectivity towards acetylcholinesterase (AChE), and could inhibit self-induced ß-amyloid (Aß) aggregation. Especially, compound 4n presented the highest ability to inhibit AChE (IC50, 0.027⯵M for hAChE) and good inhibition of Aß aggregation (40.19% at 25⯵M). Kinetic and molecular modeling studies revealed that 4n was a mixed-type inhibitor, which could interact simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, it also possessed specific metal-chelating ability, good BBB permeability and low toxicity on SH-SY5Y neuroblastoma cells. Moreover, compound 4n did not exhibit any acute toxicity in mice at doses up to 1000â¯mg/kg, and could reverse the cognitive dysfunction of scopolamine-induced AD mice. As far as we know, 4n was the first reported dithiocarbamate derivative with multifunctional activity. Its excellent profiles in vitro and effectivity in vivo highlight this structurally distinct compound as a potential lead compound in the research of innovative multifunctional drugs for AD.
Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Desenho de Fármacos , Tiocarbamatos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Amplitude de Movimento Articular/efeitos dos fármacos , Relação Estrutura-Atividade , Tiocarbamatos/químicaRESUMO
Haemophilus parasuis (H. parasuis) is the etiological agent of swine Glässer's disease, which leads to significant economic loss in swine industry over the world. Subunit vaccine based on outer membrane protein is one of the promising choices to protect pigs against H. parasuis infection despite low immunity efficiency. In this paper, outer membrane protein 16 (Omp16) of H. parasuis encapsulated by alginate-chitosan microspheres as antigen carriers was explored for the first time in a mouse model. Our results showed that the microspheres with Omp16 induced significant higher H. parasuis-specific antibodies, and higher titers of IL-2, IL-4, and IFN-γ than those by Omp16-FIA in treated mice (p<0.05). Moreover, H. parasuis load in the tissues from liver, spleen, and lung of mice immunized with microspheres containing Omp16 was significantly decreased (p<0.05) than that in the same counterpart tissues of control groups. In addition, 80% mice treated with Omp16 and 70% mice with Omp16-FIA were survived after challenged with H. parasuis virulent strain LY02 (serovar 5). Therefore, Omp16-based microsphere vaccine induces both humoral and cellular immune responses and provides promising protection against H. parasuis infection in mice.
Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Portadores de Fármacos/administração & dosagem , Infecções por Haemophilus/veterinária , Vacinas Anti-Haemophilus/imunologia , Haemophilus parasuis/imunologia , Doenças dos Suínos/prevenção & controle , Alginatos/administração & dosagem , Estruturas Animais/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Quitosana/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Ácido Glucurônico/administração & dosagem , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/administração & dosagem , Ácidos Hexurônicos/administração & dosagem , Imunidade Celular , Imunidade Humoral , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos BALB C , Microesferas , Análise de Sobrevida , Suínos , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologiaRESUMO
This experiment was performed in order to investigate the effects of chitosan-Zn chelate (CS-Zn) on activities of antioxidant enzymes and immune function in weaned piglets. One hundred and twenty weaned piglets (Duroc × Landrace × Yorkshire) with 7.12 ± 0.25 kg body weight were allotted to four treatments. A basal diet without Zn supplementation was used as control group. The other three treatments were fed the control diet supplemented with 100 mg/kg Zn as ZnSO4, 100 mg/kg Zn as CS-Zn, 100 mg/kg Zn as ZnSO4 and chitosan (the content of chitosan was the same as that of CS-Zn), respectively. The feeding trial lasted 30 days. Spleen index of pigs fed dietary CS-Zn was higher (p < 0.05) than that of control pigs. Thymus index and lymph node index did not differ among the pigs fed any diets (p > 0.05). T-AOC levels, Cu-ZnSOD, and GSH-PX activities in serum or liver of the pigs receiving CS-Zn diet were higher than those of the pigs fed CS+ZnSO4 or ZnSO4 diets (p < 0.05). These pigs fed dietary CS-Zn also showed lower MDA content in liver compared with the pigs fed other diets (p < 0.05). Serum IgA, complement 3, and complement 4 levels of pig fed dietary CS-Zn was higher than those of the pigs fed other diets (p < 0.05). Supplemental dietary Zn did not change serum IgG and IgM levels (p > 0.05). The ALP activity of pigs fed dietary CS-Zn was higher than those of the pigs fed other three diets (p < 0.05). No significant differences were founded in serum GOT or GPT activities of pigs fed dietary Zn (p > 0.05). The results of the present study indicated that chitosan-Zn chelate could increase antioxidant capacity and improve immune function in weaned piglets compared with ZnSO4 or chitosan.
Assuntos
Quitosana/farmacologia , Glutationa Peroxidase/metabolismo , Sistema Imunitário/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/farmacologia , Alanina Transaminase/sangue , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/análise , Aspartato Aminotransferases/sangue , Quitosana/administração & dosagem , Dieta , Glutationa Peroxidase/sangue , Sistema Imunitário/metabolismo , Imunoglobulinas/sangue , Fígado/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Malondialdeído/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Superóxido Dismutase/sangue , Suínos , Timo/efeitos dos fármacos , Timo/metabolismo , Desmame , Zinco/administração & dosagem , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/farmacologiaRESUMO
A new liquid chromatography-electrospray ionization-mass/mass spectrometry (LC-ESI-MS/MS) assay method has been developed and validated for the quantification of nitidine chloride (NC), an anti-cancer bioactive substance of Zanthoxylum nitidum (Roxb.) DC. plants, in rat plasma using carbamazepine as an internal standard (I.S.). The NC and I.S. were extracted from rat plasma by acetonitrile protein procedure. Chromatographic separation was carried out with a C(18) column (2.1 mm × 150 mm, 3 µm) with a security guard C18 column (4 mm × 20 mm, 3 µm). The mobile phase consisted of acetonitrile-10 mM ammonium acetate buffer solution-formic acid (35:65:0.2, v/v/v) and delivered at the flow rate of 0.25 mL/min. LC-ESI-MS/MS was performed on a triple-quadrupole mass spectrometry equipped with electrospray ionization (ESI) and positive multiple reaction monitoring (MRM). Target ions were monitored at [M](+)m/z 348.2 for NC and [M]⺠m/z 237.2 for I.S. The method was linear over the concentration range of 5.0-1500.0 ng/mL. The intra- and inter-day relative standard deviations of the assay were less than 5.0%. The lower limit of quantification was 5.0 ng/mL. The developed method was successfully applied to the estimation of the pharmacokinetic parameters of NC by intravenous administration to rats.
Assuntos
Benzofenantridinas/sangue , Animais , Benzofenantridinas/farmacocinética , Cromatografia Líquida/métodos , Estabilidade de Medicamentos , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
The experiment was conducted to evaluate the effect of copper-loaded chitosan nanoparticles on the small intestinal morphology and activities of digestive enzyme and mucosal disaccharase in rats. Forty male Sprague-Dawley rats, with average body weight of 82 g, were randomly allotted to five groups (n = 8). All rats were received a basal diet (control) or the same basal diet added with 80 mg/kg BW CuSO(4), 80 mg/kg BW chitosan (CS-I), 80 mg/kg BW copper-loaded chitosan nanoparticles (CSN-I), 160 mg/kg BW copper-loaded chitosan nanoparticles (CSN-II), respectively. The experiment lasted 21 days. The results showed that the villus heights of the small intestinal mucosa in groups CSN-I and CSN-II were higher than those of the control, group CuSO(4) or CS-I. The crypt depth of duodenum and ileum mucosa in group CSN-I or CSN-II was depressed. Compared with the control, there were no significant effects of CuSO(4) or CS-I on the villus height and crypt depth of small intestinal mucosa. Supplementation with CSN improved the activities of trypsin, amylase and lipase in the small intestinal contents and maltase, sucrase and lactase of duodenum, jejunum, and ileum mucosa while there were no significant effects of CuSO(4) on the digestive enzyme activities of the small content compared with the control. The results indicated that intestinal morphology, activities of digestive enzyme in digesta and mucosal disaccharase were beneficially changed by treatment of copper-loaded chitosan nanoparticles.
Assuntos
Quitosana/administração & dosagem , Cobre/administração & dosagem , Intestino Delgado/efeitos dos fármacos , Nanopartículas , Administração Oral , Animais , Intestino Delgado/anatomia & histologia , Intestino Delgado/enzimologia , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
The present study was designed to investigate the effects of various cadmium concentrations on porcine growth hormone (GH) secretion in serum and cultured pituitary cells and to explore the possible mechanisms of cadmium toxicity. In feeding trial, 192 barrows (Duroc x Landrace x Yorkshire), with similar initial body weights, were randomly divided into four different treatment groups with three replicates for each treatment. The diets were supplemented for 83 days with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2). For the cell culture trial, dispersed pituitary cells were incubated with graded doses of cadmium (0, 5, 10, 15, or 20 microM) for 24 h. Pigs treated with 10 mg/kg cadmium had significantly decreased serum GH content. 3-(4,5-dimethyl-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that Cd toxicity was dose-dependent. Cell viability was reduced to 50% at 15 microM concentration. Administration of cadmium significantly reduced GH secretion, whereas cellular NO content and inducible nitric oxide synthase activity increased to a certain extent. These findings suggest that the decrease of GH might be related to NO production and to a change of NO signal pathway caused by cadmium.
Assuntos
Intoxicação por Cádmio/metabolismo , Hormônio do Crescimento/sangue , Óxido Nítrico/biossíntese , Hipófise/metabolismo , Animais , Cloreto de Cádmio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hormônio do Crescimento/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , SuínosRESUMO
Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67 +/- 1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.