Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
2.
Nano Lett ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808664

RESUMO

Mechanochemical strategies are widely used in various fields, ranging from friction and wear to mechanosynthesis, yet how the mechanical stress activates the chemical reactions at the electronic level is still open. We used first-principles density functional theory to study the rule of the stress-modified electronic states in transmitting mechanical energy to trigger chemical responses for different mechanochemical systems. The electron density redistribution among initial, transition, and final configurations is defined to correlate the energy evolution during reactions. We found that stress-induced changes in electron density redistribution are linearly related to activation energy and reaction energy, indicating the transition from mechanical work to chemical reactivity. The correlation coefficient is defined as the term "interface reactivity coefficient" to evaluate the susceptibility of chemical reactivity to mechanical action for material interfaces. The study may shed light on the electronic mechanism of the mechanochemical reactions behind the fundamental model as well as the mechanochemical phenomena.

3.
Small ; : e2401022, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809081

RESUMO

Renewable energy technologies, such as water splitting, heavily depend on the oxygen evolution reaction (OER). Nanolaminated ternary compounds, referred to as MAX phases, show great promise for creating efficient electrocatalysts for OER. However, their limited intrinsic oxidative resistance hinders the utilization of conductivity in Mn+1Xn layers, leading to reduced activity. In this study, a method is proposed to improve the poor inoxidizability of MAX phases by carefully adjusting the elemental composition between Mn+1Xn layers and single-atom-thick A layers. The resulting Ta2FeC catalyst demonstrates superior performance compared to conventional Fe/C-based catalysts with a remarkable record-low overpotential of 247 mV (@10 mA cm-2) and sustained activity for over 240 h. Notably, during OER processing, the single-atom-thick Fe layer undergoes self-reconstruction and enrichment from the interior of the Ta2FeC MAX phase toward its surface, forming a Ta2FeC@Ta2C@FeOOH heterostructure. Through density functional theory (DFT) calculations, this study has found that the incorporation of Ta2FeC@Ta2C not only enhances the conductivity of FeOOH but also reduces the covalency of Fe─O bonds, thus alleviating the oxidation of Fe3+ and O2-. This implies that the Ta2FeC@Ta2C@FeOOH heterostructure experiences less lattice oxygen loss during the OER process compared to pure FeOOH, leading to significantly improved stability. These results highlight promising avenues for further exploration of MAX phases by strategically engineering M- and A-site engineering through multi-metal substitution, to develop M2AX@M2X@AOOH-based catalysts for oxygen evolution.

4.
Microsyst Nanoeng ; 10: 65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784375

RESUMO

The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.

5.
J Health Psychol ; : 13591053241253065, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767276

RESUMO

This study investigated the predicting effect of implicit theories of health on HPV vaccination intention among young adult Chinese women and its underlying mechanisms. Four-hundred and eighty-three young Chinese women adults (18-26 years old) participated this study by completing measures on implicit theories of health, consideration of future consequences, future self-continuity, and reported their HPV vaccination intention. The results demonstrated that age, whether they knew someone being diagnosed with cancer, implicit (incremental) theories of health, consideration of future consequences (CFC-Future), and future self-continuity significantly predicted young adult Chinese women's HPV vaccination intention. The predicting effect of implicit theories of health was mediated by consideration of future consequences and future self-continuity. Implications of the current research for promoting HPV vaccination among young adult women and directions for future research are discussed.

6.
Biosens Bioelectron ; 259: 116369, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38781695

RESUMO

Accurate and effective detection is essential to against bacterial infection and contamination. Novel biosensors, which detect bacterial bioproducts and convert them into measurable signals, are attracting attention. We developed an artificial intelligence (AI)-assisted smartphone-based colorimetric biosensor for the visualized, rapid, sensitive detection of pathogenic bacteria by measuring the bacteria secreted hyaluronidase (HAase). The biosensor consists of the chlorophenol red-ß-D-galactopyranoside (CPRG)-loaded hyaluronic acid (HA) hydrogel as the bioreactor and the ß-galactosidase (ß-gal)-loaded agar hydrogel as the signal generator. The HAase degrades the bioreactor and subsequently determines the release of CPRG, which could further react with ß-gal to generate signal colors. The self-developed YOLOv5 algorithm was utilized to analyze the signal colors acquired by smartphone. The biosensor can provide a report within 60 min with an ultra-low limit of detection (LoD) of 10 CFU/mL and differentiate between gram-positive (G+) and gram-negative (G-) bacteria. The proposed biosensor was successfully applied in various areas, especially the evaluation of infections in clinical samples with 100% sensitivity. We believe the designed biosensor has the potential to represent a new paradigm of "ASSURED" bacterial detection, applicable for broad biomedical uses.

8.
Front Endocrinol (Lausanne) ; 15: 1351497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742196

RESUMO

Diabetic nephropathy (DKD) is a common chronic complication of diabetes mellitus and an important cause of cardiovascular-related death. Oxidative stress is a key mechanism leading to diabetic nephropathy. However, the current main therapeutic approach remains combination therapy and lacks specific therapies targeting oxidative stress. With the development of nanotechnology targeting ROS, therapeutic fluids regarding their treatment of diabetic nephropathy have attracted attention. In this review, we provide a brief overview of various ROS-based nanomaterials for DKD, including ROS-scavenging nanomaterials, ROS-associated nanodelivery materials, and ROS-responsive nanomaterials. In addition, we summarize and discuss key factors that should be considered when designing ROS-based nanomaterials, such as biosafety, efficacy, targeting, and detection and monitoring of ROS.


Assuntos
Nefropatias Diabéticas , Nanoestruturas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais
9.
Chin J Integr Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753276

RESUMO

Rheumatoid arthritis (RA) is a worldwide public health problem. Interventions to delay or prevent the onset of RA have attracted much attention in recent years, and researchers are now exploring various prevention strategies. At present, there is still no unified consensus for RA prevention, but targeting therapeutic windows and implementing interventions for at-risk individuals are extremely important. Due to the limited number of clinical trials on pharmacologic interventions, further studies are needed to explore and establish optimal intervention regimens and effective measures to prevent progression to RA. In this review, we introduce the RA disease process and risk factors, and present research on the use of both Western and Chinese medicine from clinical perspectives regarding RA prevention. Furthermore, we describe several complete and ongoing clinical studies on the use of Chinese herbal formulae for the prevention of RA.

10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731915

RESUMO

The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.


Assuntos
Gonadotrofos , Hipófise , Maturidade Sexual , Análise de Célula Única , Animais , Ratos , Maturidade Sexual/genética , Hipófise/metabolismo , Gonadotrofos/metabolismo , Análise de Célula Única/métodos , Masculino , Feminino , Biomarcadores/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Hormônio Foliculoestimulante/metabolismo
11.
Poult Sci ; 103(7): 103817, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759568

RESUMO

Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.

12.
Int J Dermatol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703130

RESUMO

BACKGROUND: Melanoma is a highly malignant tumor. Moreover, its prevalence is increasing at a rapid rate year after year. Currently, UV light is the leading cause of melanoma, although numerous other risk factors exist, including arsenic. The link between arsenic and the likelihood of developing melanoma has long been debated. As a result, we conducted a meta-analysis of the available data to investigate the association between arsenic exposure and melanoma. METHODS: We identified seven non-randomized controlled studies with 41,949 participants by searching the Chinese CNKI, Embase, PubMed, and Cochrane Library databases. We then used random-effects or fixed-effects models to evaluate the pooled odds ratios (OR) and their 95% confidence intervals (CI). Subgroup analyses were also carried out with different included regions. RESULTS: Participants in the study who were exposed to arsenic had a somewhat higher chance of developing melanoma than those who were not (OR = 1.47, 95% CI 1.01-2.13). A subgroup analysis was also carried out for the US region, and the findings were not statistically significant (OR = 1.40, 95% CI 0.94-2.07). CONCLUSION: This meta-analysis shows that arsenic exposure relates to an increased risk of melanoma.

13.
Biology (Basel) ; 13(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38785804

RESUMO

The pathogenesis of inflammatory bowel disease (IBD) is still unknown. Mesenteric lymphatics (MLs), which are closely related to the intestine in both anatomy and physiology, have been suggested to be involved in IBD. In the present study, we aim to investigate the effects of ML immune cells on IBD and explore the potential associated mechanisms. Acute colitis was induced in rats using dextran sulfate sodium salt (DSS). Mesenteric lymphangiogenesis, ML stenosis, and dilation were observed, with an increased proportion of MLB cells in DSS-induced colitis rats. The adoptive transfer of B cells isolated from ML (MLB) was employed to investigate their effects on colitis. MLB cells derived from DSS-induced colitis rats exhibited a higher propensity to migrate to the intestine. The proportion of colonic T cells was altered, along with the aggravated colitis induced by the adoptive transfer of MLB cells derived from DSS-induced colitis rats. RNA sequencing revealed increased Cxcr5 expression in MLB cells from colitis rats, while real-time PCR indicated an upregulation of its ligand Cxcl13 in the colon of colitis rats. These findings suggest that MLB cells may migrate to the intestine and aggravate colitis. In summary, colonic T cells respond to MLB cells from colitis rats, and MLB cells aggravate DSS-induced colitis via the CXCR5-CXCL13 axis.

14.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790630

RESUMO

Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.

15.
Photochem Photobiol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695248

RESUMO

Astaxanthin (AST) is a xanthophyll carotenoid with strong oxidation resistance, which can effectively scavenge various free radicals and protect organisms from oxidative damage. AST is also known to have prominent anti-aging effects, but the underlying mechanism of AST in anti-radiation aging is largely unknown. In this work, we applied ultraviolet (UV) irradiation to accelerate the aging of Caenorhabditis elegans (C. elegans) and treated the nematodes with AST to explore whether and how AST could attenuate the radiation-induced aging effect. Our results showed that AST improved the survival rate of C. elegans, reduced the aging biomarkers, and alleviated the mitochondrial dysfunction caused by the irradiation. Based on the transcriptome sequencing analysis, we identified that the key genes regulated by AST were involved in JNK-MAPK and DAF-16 longevity signaling pathways. Furthermore, we employed jnk-1 and daf-16 mutants and verified the role of the JNK-1/DAF-16 signaling pathway in the anti-aging effect. As such, this study has not only demonstrated that AST can resist the aging process caused by UV-irradiation but also revealed the anti-aging mechanism of AST through JNK-1/DAF-16 activation in C. elegans.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38743015

RESUMO

BACKGROUND: Published studies on the association between lithium use and the decreased risk of major neurocognitive disorders (MNCDs) have shown disparities in their conclusions. We aimed to provide updated evidence of this association. METHODS: A comprehensive literature search was performed in PubMed, EMBASE, and Cochrane Library from inception until August 31, 2023. All the observational studies evaluating the association between lithium use and MNCD risk were eligible for inclusion. Pooled odds ratios (ORs) and 95% prediction intervals were computed using random-effects models. RESULTS: Eight studies with 377,060 subjects were included in the analysis. In the general population on the association between lithium use versus nonuse and dementia, the OR was 0.94 (95% confidence interval [CI] = 0.77-1.24). Further analysis also demonstrated that lithium use was not associated with an increased risk of Alzheimer's disease (OR = 0.69, 95% CI: 0.31-1.65). When the analysis was restricted to individuals with bipolar disorder to reduce the confounding by clinical indication, lithium exposure was also not associated with a decreased risk of MNCD (OR = 0.9, 95% CI = 0.71-1.15). CONCLUSION: The results of this systematic review and meta-analysis do not support a significant association between lithium use and the risk of MNCD.

17.
Adv Mater ; : e2404360, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657134

RESUMO

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

18.
Expert Opin Drug Saf ; : 1-11, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38682580

RESUMO

BACKGROUND: This study aimed to analyze the adverse events to bendamustine using data obtained from the Food and Drug Administration open public data project (openFDA) and to provide a reference for its use in clinical practice. RESEARCH DESIGN AND METHODS: Adverse events (AEs) due to bendamustine usage reported from 1 January 2008 to 31 March 2023 were collected from the FDA Adverse Event Reporting System (FAERS). The reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian plausible propagation neural network (BCPNN), and multinomial gamma-Poisson distribution shrinking (MGPS) algorithms were used to identify signs of adverse reactions caused by bendamustine. RESULTS: A total of 4214 AE reports where bendamustine was considered as the first suspected drug were obtained from FAERS. The analysis revealed 214 AE risk signals, among which 141 met the criteria but they were not listed as possible side effects on the drug information sheet provided in the package. CONCLUSION: Our findings identified numerous common AEs with previously reported clinical observations. We also identified some signs of potential new AEs, indicating the need of careful clinical monitoring of patients treated with bendamustine and further risk identification research about this drug.

19.
Polymers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675096

RESUMO

The polar sulfonate groups in cationic dyeable polyester (CDP) lead to complex crystallization behavior, affecting CDP production's stability. In this study, cationic dyeable polyesters (CDP) with different sulfonate group contents were prepared via one-step feeding of sodium isophthalic acid-5-sulfonate (SIPA), terephthalic acid (PTA), and ethylene glycol (EG). The non-isothermal crystallization behavior of these copolyesters was analyzed by differential scanning calorimetry (DSC). Results show that the crystallization temperature of the sample shifts to lower values with the increase in SIPA content. The relaxation behavior of the molecular chain is enhanced due to the ionic aggregation effect of sulfonate groups in CDP. Therefore, at low cooling rates (2.5 °C/min and 5 °C/min), some molecular chain segments in CDP are still too late to orderly stack into the lattice, forming metastable crystals, and melting double peaks appear on the melting curve after crystallization. When the cooling rate increases (10-20 °C/min), the limited region of sulfonate aggregation in CDP increases, resulting in more random chain segments, and a cold crystallization peak appears on the melting curve after crystallization. The non-isothermal crystallization behavior of all samples was fitted and analyzed by the Jeziorny equation, Ozawa equation, and Mo equation. The results indicate that the nucleation density and nucleation growth rate of CDP decrease with the increase in SIPA content. Meanwhile, analysis of the Kissinger equation reveals that the activation energy of non-isothermal crystallization decreases gradually with the increase in SIPA content, and the addition of SIPA makes CDP crystallization more difficult.

20.
Am J Transplant ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648890

RESUMO

The activation of innate immunity following transplantation has been identified as a crucial factor in allograft inflammation and rejection. However, the role of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling-mediated innate immunity in the pathogenesis of allograft rejection remains unclear. Utilizing a well-established murine model of corneal transplantation, we demonstrated increased expression of cGAS and STING in rejected-corneal allografts compared with syngeneic (Syn) and normal (Nor) corneas, along with significant activation of the cGAS/STING pathway, as evidenced by the enhanced phosphorylation of TANK-binding kinase 1and interferon regulatory factor 3. Pharmacological and genetic inhibition of cGAS/STING signaling markedly delayed corneal transplantation rejection, resulting in prolonged survival time and reduced inflammatory infiltration. Furthermore, we observed an increase in the formation of neutrophil extracellular traps (NETs) in rejected allografts, and the inhibition of NET formation through targeting peptidylarginine deiminase 4 and DNase I treatment significantly alleviated immune rejection and reduced cGAS/STING signaling activity. Conversely, subconjunctival injection of NETs accelerated corneal transplantation rejection and enhanced the activation of the cGAS/STING pathway. Collectively, these findings demonstrate that NETs contribute to the exacerbation of allograft rejection via cGAS/STING signaling, highlighting the targeting of the NETs/cGAS/STING signaling pathway as a potential strategy for prolonging allograft survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA