Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(12): 2487-2497, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502940

RESUMO

Large-scale and long-term simulation of chemical reactions are key research topics in computational chemistry. However, there are still difficulties in simulating high-temperature reactions, such as polymer thermal decomposition. Herein, we introduce an adaptive potential parameter optimization framework designed to automatically fine-tune parameters, and the application of it to optimize ReaxFF parameters enhances the accuracy of chemical reaction simulations conducted at experimental temperatures. To achieve this, we leverage the power of Random Forests and interpretable machine learning techniques that enable the identification and selection of parameters that exert a substantial influence on the target attribute. By training deep neural network (NN) models, we established optimized parameter associations with reference properties. We train deep neural network (NN) models to establish the relationship between the optimized parameters and reference properties. We employ a Genetic Algorithm (GA) to utilize the surrogate NN model and the quantum mechanical targets to speed up the search for the optimal parameters. Our simulation results of resin pyrolysis show that the adaptive optimized ReaxFF can predict the peak temperature more accurately and obtain reasonable product composition under conditions that more closely resemble experimental scenarios. This work facilitates advances in force field parameter optimization for more accurate and universal reaction simulations.

2.
Foods ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981225

RESUMO

Cultivar identification is a necessary step in tea breeding programs. Rapid identification methods would greatly improve these breeding processes. To preliminarily identify the three new Lucha tea varieties (LC6, LC7, and LC17) cultivated in Shandong, we measured their main agronomic characters and biochemical components. Then, we analyzed the metabolic profiles of these tea varieties and Fuding Dabaicha (FD) using a UPLC-ESI-MS/MS system. Their biochemical components indicated that the Lucha varieties had excellent varietal characteristics, with higher amino acid contents. Furthermore, secondary metabolism changed a lot in the Lucha tea varieties compared with that in the FD, with their accumulations of flavonoids and phenolic acids showing significant differences. These differential flavonoids were dominated by flavones and flavanone, flavonols, flavonoid carbonosides, and flavanols monomer. Flavanols especially, including epicatechin glucoside, epicatechin-3-(3″-O-methyl)gallate, epigallocatechin-3-O-(3,5-O-dimethyl)gallate, and epitheaflavic acid-3-O-Gallate, showed higher levels in the Lucha varieties. The phenolic acids containing caffeoyl groups showed higher levels in the Lucha varieties than those in the FD, while those containing galloyl groups showed a reverse pattern. Nitrogen metabolism, including amino acids, also showed obvious differences between the Lucha varieties and FD. The differential amino acids were mainly higher in the Lucha varieties, including 5-L-glutamyl-L-amino acid, N-monomethyl-L-arginine, and N-α-acetyl-L-ornithine. By using these approaches, we found that LC6, LC7, and LC17 were excellent varieties with a high yield and high quality for making green teas in Shandong.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA