Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38870511

RESUMO

Objective: This work investigated the clinical intervention effect of evidence-based nursing (EBN) measures for patients in the recovery stage after general anesthesia (GA), aiming to provide a nursing reference for patients in the recovery stage after surgery. Methods: The enrolled participants were 102 patients who underwent surgical treatment in our hospital from December 2021 to December 2022. According to the principle of randomized control, they were enrolled into an observation group (51 cases, Obs group) and a control group (51, cases, Ctrl group), and the general nursing methods and EBN measures were respectively implemented. The incidence of restlessness, complication rate, and nursing satisfaction were compared among patients. The recovery period and visual analog scale (VAS) were evaluated. Results: The eye-opening time, palm-holding time, and extubation time in the Obs group were shorter than those in the Ctrl group (P < .05). The incidence of agitation during convalescence under GA in the Obs group was significantly lower than in the Ctrl group, with a statistically significant difference among both groups (P < .05). Compared to the Ctrl group, the VAS score of patients in the Obs group receiving the EBN was lower at 6 h, 12 h, and 24 h after the surgery (P < .05). The patients in the Obs group presented a substantially lower complication rate and remarkably higher nursing satisfaction (P < .05). Conclusion: The application of EBN measures in patients after GA could effectively shorten the recovery time, lower the incidence of agitation and complication rate during the recovery, and improve nursing satisfaction.

2.
J Pain Res ; 17: 2015-2028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863870

RESUMO

Purpose: The aim of this study is to evaluate the efficacy and safety of Snap Needles (SN) in the management of Postoperative Hemorrhoidal Pain (POHP). Patients and Methods: A systematic search was conducted in various databases, including EMBASE, Web of Science, PubMed, WanFang database, China National Knowledge Infrastructure (CNKI), China Biomedical Literature Database (CBM), and China Science and Technology Journal Database (VIP), spanning from their inception to August 2023, to identify relevant randomized controlled trials (RCTs) on SN for POHP. The primary outcome measure was the Visual Analog Scale (VAS), while secondary outcomes encompassed the Total Effective Rate (TER), Wound Healing Time (WHT), Pain Relief Time (PRT), Pain Disappearance Time (PDT), and Adverse Events (AEs). The Cochrane Risk of Bias Tool was employed to assess the quality of individual studies. A meta-analysis was conducted using RevMan 5.4.1 software. Results: The meta-analysis included 11 RCTs involving 1188 POHP patients, with an overall assessment of study quality ranging from very low to moderate. The findings revealed that the SN group exhibited significant improvements in treatment outcomes when compared to the control group (CG). These improvements were reflected in reduced VAS scores (mean difference [MD] = -1.10, 95% confidence interval [CI]: -1.31, -0.89, P < 0.05), shorter WHT (MD = -2.55, 95% CI: -3.02, -2.09, P < 0.05), quicker PRT (MD = -7.99, 95% CI: -8.48, -7.49, P < 0.05), fewer AEs (risk ratio [RR] = 0.38, 95% CI: 0.22, 0.67, P < 0.05), improved TER (RR = 1.18, 95% CI: 1.09, 1.27, P < 0.05), and faster PDT (MD = 19.24, 95% CI: 14.17, 24.31, P < 0.05). Conclusion: The use of SN appears to yield favorable outcomes in the treatment of POHP, and is potentially an alternative therapy to western drug therapy.

3.
BMC Cancer ; 24(1): 420, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580922

RESUMO

BACKGROUND: Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS: We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS: VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS: The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Simulação de Acoplamento Molecular , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Imunoterapia , Microambiente Tumoral/genética
4.
Adv Healthc Mater ; 13(13): e2400068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320299

RESUMO

Cancer nanovaccines have attracted widespread attention by inducing potent cytotoxic T cell responses to improve immune checkpoint blockade (ICB) therapy, while the lack of co-stimulatory molecules limits their clinical applications. Here, a genetically engineered cancer cytomembrane nanovaccine is reported that simultaneously overexpresses co-stimulatory molecule CD40L and immune checkpoint inhibitor PD1 to elicit robust antitumor immunity for cancer immunotherapy. The CD40L and tumor antigens inherited from cancer cytomembranes effectively stimulate dendritic cell (DC)-mediated immune activation of cytotoxic T cells, while the PD1 on cancer cytomembranes significantly blocks PD1/PD-L1 signaling pathway, synergistically stimulating antitumor immune responses. Benefiting from the targeting ability of cancer cytomembranes, this nanovaccines formula shows an enhanced lymph node trafficking and retention. Compared with original cancer cytomembranes, this genetically engineered nanovaccine induces twofold DC maturation and shows satisfactory precaution efficacy in a breast tumor mouse model. This genetically engineered cytomembrane nanovaccine offers a simple, safe, and robust strategy by incorporating cytomembrane components and co-stimulatory molecules for enhanced cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Animais , Imunoterapia/métodos , Camundongos , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Engenharia Genética/métodos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Nanovacinas
5.
Int J Biol Macromol ; 254(Pt 1): 127806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918593

RESUMO

Bacterial infection and chronic inflammation are two major risks in diabetic wound healing, which increase patient mortality. In this study, a multifunctional sprayable nanogel (Ag-G@CS) based on chitosan has been developed to synergistically inhibit bacterial infection, eradicate biofilm, and relieve inflammation of diabetic wounds. The nanogel is successfully crafted by encapsulating with a nitric oxide (NO) donor and performing in-situ reduction of silver nanoparticles (Ag). The released NO enhances the antibacterial efficacy of Ag, nearly achieving complete eradication of biofilms in vitro. Upon application on both normal or diabetic chronic wounds, the combination effects of released NO and Ag offer a notable antibacterial effect. Furthermore, after bacteria inhibition and biofilm eradication, the NO released by the nanogel orchestrates a transformation of M1 macrophages into M2 macrophages, significantly reducing tumor necrosis factor α (TNF-α) release and relieving inflammation. Remarkably, the released NO also promotes M2a to M2c macrophages, thereby facilitating tissue remodeling in chronic wounds. More importantly, it upregulates the expression of vascular endothelial growth factor (VEGF), further accelerating the wound healing process. Collectively, the formed sprayable nanogel exhibits excellent inhibition of bacterial infections and biofilms, and promotes chronic wound healing via inflammation resolution, which has excellent potential for clinical use in the future.


Assuntos
Infecções Bacterianas , Quitosana , Diabetes Mellitus Experimental , Nanopartículas Metálicas , Animais , Humanos , Quitosana/farmacologia , Óxido Nítrico/farmacologia , Nanogéis , Fator A de Crescimento do Endotélio Vascular/farmacologia , Diabetes Mellitus Experimental/metabolismo , Prata/farmacologia , Cicatrização , Antibacterianos/farmacologia , Macrófagos , Bactérias , Biofilmes , Inflamação
6.
Front Bioeng Biotechnol ; 11: 1225937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485315

RESUMO

Introduction: Radiotherapy (RT) is one of the key methods for treating breast cancer. However, the effect of single RT is often poor because of insufficient deposition of X-rays in tumor sites and radiation resistance induced by the abnormal tumor microenvironment (overexpression of glutathione (GSH)). The development of multifunctional RT sensitizers and synergetic therapeutic strategies is, therefore, a promising area for enhancing the anticancer effect of RT. Methods: In this study, a multifunctional nanozyme hydrogel based on Cu-doped polypyrrole (CuP) was designed to work concertedly with a second near-infrared thermal RT. The CuP-based hydrogel (CH) reached the tumor site when injected in-situ and achieved long-term storage. Results: Once stimulated with 1064-nm laser irradiation, the heated and softened hydrogel system released CuP nanozyme to provide photothermal therapy, thereby inhibiting the repair of DNA damage caused by RT. In addition, CuP with dual nanozyme activity depleted the intracellular GSH to reduce the antioxidant capacity of the tumor. Moreover, CuP converted H2O2 to produce ·OH to directly kill the tumor cells, thus enhancing the capability of low-dose RT to inhibit tumor growth. In vivo experiments showed that the CH system used in combination with a low-power 1064-nm laser and low-dose RT (4 Gy) exhibited good synergistic anticancer effects and biological safety. Discussion: As a new light-responsive hydrogel system, CH holds immense potential for radio-sensitization.

7.
Theranostics ; 13(9): 2811-2824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284440

RESUMO

Background: Safe and effective wound healing can be a major clinical challenge. Inflammation and vascular impairment are two main causes of inadequate wound healing. Methods: Here, we developed a versatile hydrogel wound dressing, comprising a straightforward physical mixture of royal jelly-derived extracellular vesicles (RJ-EVs) and methacrylic anhydride modified sericin (SerMA), to accelerate wound healing by inhibiting inflammation and promoting vascular reparation. Results: The RJ-EVs showed satisfactory anti-inflammatory and antioxidant effects, and significantly promoted L929 cell proliferation and migration in vitro. Meanwhile, the photocrosslinked SerMA hydrogel with its porous interior structure and high fluidity made it a good candidate for wound dressing. The RJ-EVs can be gradually released from the SerMA hydrogel at the wound site, ensuring the restorative effect of RJ-EVs. In a full-thickness skin defect model, the SerMA/RJ-EVs hydrogel dressing accelerated wound healing with a healing rate of 96.8% by improving cell proliferation and angiogenesis. The RNA sequencing results further revealed that the SerMA/RJ-EVs hydrogel dressing was involved in inflammatory damage repair-related pathways including recombinational repair, epidermis development, and Wnt signaling. Conclusion: This SerMA/RJ-EVs hydrogel dressing offers a simple, safe and robust strategy for modulating inflammation and vascular impairment for accelerated wound healing.


Assuntos
Vesículas Extracelulares , Cicatrização , Humanos , Inflamação , Hidrogéis/química
8.
ACS Nano ; 17(11): 10206-10217, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37183977

RESUMO

Cuproptosis shows good application prospects in tumor therapy. However, the copper efflux mechanism and highly expressed intracellular reducing substances can inhibit the cuproptosis effects. In this study, a platelet vesicle (PV) coated cuprous oxide nanoparticle (Cu2O)/TBP-2 cuproptosis sensitization system (PTC) was constructed for multiple induction of tumor cuproptosis. PTC was prepared by physical extrusion of AIE photosensitizer (TBP-2), Cu2O, and PV. After the biomimetic modification, PTC can enhance its long-term blood circulation and tumor targeting ability. Subsequently, PTC was rapidly degraded to release copper ions under acid conditions and hydrogen peroxides in tumor cells. Then, under light irradiation, TBP-2 quickly enters the cell membrane and generates hydroxyl radicals to consume glutathione and inhibit copper efflux. Accumulated copper can cause lipoylated protein aggregation and iron-sulfur protein loss, which result in proteotoxic stress and ultimately cuproptosis. PTC treatment can target and induce cuproptosis in tumor cells in vitro and in vivo, significantly inhibit lung metastasis of breast cancer, increase the number of central memory T cells in peripheral blood, and prevent tumor rechallenge. It provides an idea for the design of nanomedicine based on cuproptosis.


Assuntos
Cobre , Neoplasias Cutâneas , Humanos , Cobre/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biomimética , Apoptose , Melanoma Maligno Cutâneo
9.
J Chem Inf Model ; 63(7): 1982-1998, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36941232

RESUMO

Modern drug discovery typically faces large virtual screens from huge compound databases where multiple docking tools are involved for meeting various real scenes or improving the precision of virtual screens. Among these tools, AutoDock Vina and its numerous derivatives are the most popular and have become the standard pipeline for molecular docking in modern drug discovery. Our recent Vina-GPU method realized 14-fold acceleration against AutoDock Vina on a piece of NVIDIA RTX 3090 GPU in one virtual screening case. Further speedup of AutoDock Vina and its derivatives with graphics processing units (GPUs) is beneficial to systematically push their popularization in large-scale virtual screens due to their high benefit-cost ratio and easy operation for users. Thus, we proposed the Vina-GPU 2.0 method to further accelerate AutoDock Vina and the most common derivatives with new docking algorithms (QuickVina 2 and QuickVina-W) with GPUs. Caused by the discrepancy in their docking algorithms, our Vina-GPU 2.0 adopts different GPU acceleration strategies. In virtual screening for two hot protein kinase targets, RIPK1 and RIPK3, from the DrugBank database, our Vina-GPU 2.0 reaches an average of 65.6-fold, 1.4-fold, and 3.6-fold docking acceleration against the original AutoDock Vina, QuickVina 2, and QuickVina-W while ensuring their comparable docking accuracy. In addition, we develop a friendly and installation-free graphical user interface tool for their convenient usage. The codes and tools of Vina-GPU 2.0 are freely available at https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit instructions and examples.


Assuntos
Algoritmos , Software , Simulação de Acoplamento Molecular , Ligantes , Desenho de Fármacos
11.
Biomaterials ; 295: 122034, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746049

RESUMO

Radioresistance of Cancer stem cell (CSC) is an important cause of tumor recurrence after radiotherapy (RT). Herein, we designed a type I aggregation-induced emission (AIE) photosensitiser-loaded biomimetic mesoporous organosilicon nanosystem (PMT) for precise depletion of CSC to prevent tumor recurrence after RT. This PMT system is composed of a type I AIE photosensitiser (TBP-2) loaded mesoporous organosilicon nanoparticles (MON) with an outer platelet membrane. The PMT system is able to specifically target CSC. Intracellular glutathione activity leads to MON degradation and the release of TBP-2. Type I photodynamic therapy is activated by exposure to white light, producing a large amount of hydroxyl radicals to promote CSC death. The results of in vivo experiments demonstrated specific removal of CSC following PMT treatment, with no tumor recurrence observed when combined with RT. However, tumor recurrence was observed in mice that received RT only. The expression of CSC markers was significantly reduced following PMT treatment. We demonstrate the development of a system for the precise removal of CSC with good biosafety and high potential for clinical translation. We believe the PMT nanosystem represents a novel idea in the prevention of tumor recurrence.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Biomimética , Células-Tronco Neoplásicas/patologia , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
12.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768966

RESUMO

Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Nanotecnologia/métodos
13.
Macromol Biosci ; 23(1): e2200329, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250413

RESUMO

Chemodynamic therapy (CDT) based on Fenton-like reaction is often limited by the tumor microenvironment (TME), which has insufficient hydrogen peroxide, and single CDT treatment is often less efficacious. To overcome these limitations, a hydrogel-based system is designed to enhance the redox stress (EOH) by loading the composite nanomaterial Cu-Hemin-Au, into the agarose hydrogels. The hydrogels can reach the tumor site upon intratumoral injection, and then coagulate and stay for extended period. Once irradiated with near-infrared light, the Cu-Hemin-Au act as a photothermal agent to convert the light energy into heat, and the EOH gradually heated up and softened, releasing the Cu-Hemin-Au residing in it to achieve photothermal therapy (PTT). Benefiting from the glucose oxidase (GOx)-like activity of the Au nanoparticles, glucose in the tumor cells is largely consumed, and hydrogen peroxide (H2 O2 ) is generated in situ, and then Cu-Hemin-Au react with sufficient H2 O2 to generate a large amount of reactive oxygen species, which promote the complete inhibition of tumor growth in mice during the treatment cycle. The hydrogel system for the synergistic enhancement of oxidative stress achieves good PTT/CDT synergy, providing a novel inspiration for the next generation of hydrogels for application in antitumor therapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Animais , Camundongos , Hidrogéis/farmacologia , Ouro , Hemina , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
14.
J Nanobiotechnology ; 20(1): 546, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585678

RESUMO

Noninvasive prenatal diagnosis (NIPD) aims to detect fetal-related genetic disorders before birth by detecting markers in the peripheral blood of pregnant women, holding the potential in reducing the risk of fetal birth defects. Fetal-nucleated red blood cells (fNRBCs) can be used as biomarkers for NIPD, given their remarkable nature of carrying the entire genetic information of the fetus. Here, we review recent advances in NIPD technologies based on the isolation and analysis of fNRBCs. Conventional cell separation methods rely primarily on physical properties and surface antigens of fNRBCs, such as density gradient centrifugation, fluorescence-activated cell sorting, and magnetic-activated cell sorting. Due to the limitations of sensitivity and purity in Conventional methods, separation techniques based on micro-/nanomaterials have been developed as novel methods for isolating and enriching fNRBCs. We also discuss emerging methods based on microfluidic chips and nanostructured substrates for static and dynamic isolation of fNRBCs. Additionally, we introduce the identification techniques of fNRBCs and address the potential clinical diagnostic values of fNRBCs. Finally, we highlight the challenges and the future directions of fNRBCs as treatment guidelines in NIPD.


Assuntos
Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Feto/metabolismo , Eritroblastos/química , Separação Celular/métodos , Citometria de Fluxo
15.
Front Bioeng Biotechnol ; 10: 1024089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246356

RESUMO

Chemodynamic therapy (CDT) is an effective anti-tumor method, while CDT alone cannot achieve a good therapeutic effect. Moreover, the overexpression of glutathione (GSH) in tumor cells dramatically limits the efficiency of CDT. Here, we proposed a hydrogel co-loading SO2 prodrug and FeGA nanoparticles (NPs) for enhancing CDT by photothermal-triggered SO2 gas therapy (FBH) system by mixing benzothiazolyl sulfonates (BTS) and FeGA NPs in a certain ratio and encapsulating them in a heat-sensitive hydrogel. FeGA NPs could accelerate the release of Fe2+ under acidic conditions and light, and combine with excess H2O2 in the tumor for chemokinetic treatment. BTS, as a water-soluble prodrug of SO2, can accurately control the release of SO2 gas by virtue of the excellent photothermal conversion ability of FeGA NPs and the acidic pH value of tumor site. SO2 can not only induce cell apoptosis, but also consume excess GSH in cancer cells and increase the content of reactive oxygen species, which seriously destroyed the redox balance in cancer cells and further promotes the therapeutic effect of Fenton reaction. The intelligent FBH system provided a new approach for the synergistic treatment of CDT and SO2 gas, which demonstrated good anticancer effects both in vivo and in vitro.

16.
Oxid Med Cell Longev ; 2022: 5089857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246405

RESUMO

Single-atom nanozymes (SAZs) with reaction specificity and optimized catalytic properties have great application prospects in tumor therapy. But the complex tumor microenvironment (low content of H2O2) limits its therapeutic effect. In this study, we developed a bionic mesoporous Fe SAZs/DDP nanosystem (CSD) for enhanced nanocatalytic therapy (NCT)/chemotherapy by simultaneously encapsulating the chemotherapeutic drugs cisplatin (DDP) and Fe SAZs with high peroxidase (POD) activity into the cancer cell membrane. CSD could evade immune recognition and actively targets tumor sites, and DDP upregulates endogenous H2O2 levels by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, thereby enhancing SAZs-mediated hydroxyl radical (·OH) production, which subsequently leads to mitochondrial damage and intolerance to chemotherapy drug. We used the HGC27/DDP cell line for in vitro and in vivo experiments. The results showed that CSD achieved good therapeutic benefits, without any side effects such as inflammatory reaction. This system can induce multiple antitumor effect with H2O2 self-supply, mitochondrial damage, and ATP downregulation and eventually lead to chemosensitization.


Assuntos
Cisplatino , Neoplasias , Trifosfato de Adenosina , Biomimética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Peróxido de Hidrogênio , Radical Hidroxila , NADP , NADPH Oxidases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peroxidases , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
17.
Mitochondrial DNA B Resour ; 7(9): 1719-1721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188671

RESUMO

Zanthoxylum esquirolii Léveillé 1914 is mainly distributed in southwest China, and its wild germplasm resources are scarce and in urgent need of conservation. In this study, we report the first complete chloroplast genome sequence of Z. esquirolii using next-generation sequencing. The circular genome is 158,390 bp in length, containing two inverted repeat (IR) regions of 27,622 bp separated by a large single copy (LSC) region of 85,580 bp and a small single copy (SSC) region of 17,566 bp. The chloroplast genome contains a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall GC content of the chloroplast genome was 38.46%, with corresponding values in the LSC, SSC, and IR regions of 36.84%, 33.55%, and 42.51%, respectively. The phylogenetic tree revealed that Z. esquirolii Levl. formed a clade with Z. piperitum DC., Z. bungeanum Maxim., Z. simulans Hance and Z. sp. NH-2018, and had a strongly supported sister relationship with Z. bungeanum.

18.
Front Bioeng Biotechnol ; 10: 1003777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105600

RESUMO

Chemodynamic therapy (CDT) is a kind of anti-tumor strategy emerging in recent years, but the concentration of hydrogen peroxide (H2O2) in the tumor microenvironment is insufficient, and it is difficult for a single CDT to completely inhibit tumor growth. Here, we designed a CuS nanoparticles (NPs) and camptothecin (CPT) co-loaded thermosensitive injectable hydrogel (SCH) with self-supplied H2O2 for enhanced CDT. SCH is composed of CuS NPs and CPT loaded into agarose hydrogel according to a certain ratio. We injected SCH into the tumor tissue of mice, and under the irradiation of near-infrared region (NIR) laser at 808 nm, CuS NPs converted the NIR laser into heat to realize photothermal therapy (PTT), and at the same time, the agarose hydrogel was changed into a sol state and CPT was released. CPT activates nicotinamide adenine dinucleotide phosphate oxidase, increases the level of H2O2 inside the tumor, and realizes the self-supply of H2O2. At the same time, CuS can accelerate the release of Cu2+ in an acidic environment and light, combined with H2O2 generated by CPT for CDT treatment, and consume glutathione in tumor and generate hydroxyl radical, thus inducing tumor cell apoptosis. The SCH system we constructed achieved an extremely high tumor inhibition rate in vitro and in vivo, presenting a new idea for designing future chemical kinetic systems.

19.
Front Bioeng Biotechnol ; 10: 998571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110320

RESUMO

Due to its responsiveness to the tumour microenvironment (TME), chemodynamic therapy (CDT) based on the Fenton reaction to produce cytotoxic reactive oxygen species (ROS) to destroy tumor has drawn more interest. However, the Fenton's reaction potential for therapeutic use is constrained by its modest efficacy. Here, we develop a novel injectable hydrogel system (FMH) on the basis of FeGA/MoS2 dual quantum dots (QDs), which uses near-infrared (NIR) laser in order to trigger the synergistic catalysis and photothermal effect of FeGA/MoS2 for improving the efficiency of the Fenton reaction. Mo4+ in MoS2 QDs can accelerate the conversion of Fe3+ to Fe2+, thereby promoting the efficiency of Fenton reaction, and benefiting from the synergistically enhanced CDT/PTT, FMH combined with NIR has achieved good anti-tumour effects in vitro and in vivo experiments. Furthermore, the quantum dots are easily metabolized after treatment because of their ultrasmall size, without causing any side effects. This is the first report to study the co-catalytic effect of MoS2 and Fe3+ at the quantum dot level, as well as obtain a good PTT/CDT synergy, which have implications for future anticancer research.

20.
Mitochondrial DNA B Resour ; 7(9): 1642-1644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147366

RESUMO

Zanthoxylum stenophyllum Hemsl., a type species for the genus Zanthoxylum (Rutaceae), is a traditional medicinal plant. We studied the complete chloroplast genome of this species using BGISEQ-500 platform. The chloroplast genome was 158,314 bp in size with a GC content of 38.45%. The genome contained two short inverted repeat (IRa and IRb) regions of 27,052 bp, a large single-copy region (LSC, 86,029 bp) and a small single-copy region (SSC, 18,181 bp). The annotated complete chloroplast genome contains 133 distinct genes, including 88 protein-coding genes, 37 transfer RNAs (tRNAs), and 8 ribosomal RNAs (rRNAs). Phylogenetic analysis indicated that Z. stenophyllum is clustered with Z. schiniflium and Z. pinnatum in the same branch with 100% bootstrap support. This complete chloroplast genome provides valuable genomic information for the molecular phylogeny and sustainable utilization of Zanthoxylum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA