Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 135: 108661, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36906049

RESUMO

Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.


Assuntos
Kefir , Lactobacillus plantarum , Penaeidae , Animais , Vibrio alginolyticus/fisiologia , Imunidade Inata , Monofenol Mono-Oxigenase/metabolismo , Resistência à Doença
2.
Fish Shellfish Immunol ; 128: 307-315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940541

RESUMO

This study investigated the effects of two probiotics, namely Lactobacillus paracasei and Bifidobacterium longum, as feed additives on growth performance, nonspecific immunity, immune-related gene expression, and disease resistance against Vibrio parahaemolyticus in Penaeus vannamei. The experimental diets were prepared using L. paracasei and B. longum at concentrations of 105 and 107 CFU/g; these diets were referred to as P5, P7, B5, and B7. After 8 weeks of the diets, regarding growth performance, the B7 group showed the highest weight gain rate (890.34 ± 103.65%), special growth rate (4.08 ± 0.19%), and feed conversion rate (1.52 ± 0.19%) compared with the other groups. Moreover, the total hemocyte counts were significantly increased (p < 0.05) in the P7 groups on day 14 during the 28-day feeding trial. The phagocytosis rate in all experimental groups was increased on day 14 and was persistently significantly activated to day 21, especially in the P7 and B5 group. The phagocytic index of the P7 group showed a significant increase on day 14 and persistent activation to day 21. In the analysis of respiratory burst activity and phenoloxidase activity, the P7 and B5 groups showed a significant increase on day 7 and persistent activation to day 21. The expression level of the immune-related genes of superoxide dismutase, clotting protein, Penaeidin2, Penaeidin3, Penaeidin4, anti-LPS factor, crustin, and lysozyme was significantly increased in the experimental groups, especially in the P7 group. Furthermore, the optimum conditions of feed additives were determined in challenge trials conducted using P7 and B5. Shrimps fed P7 and B5 showed an increased survival rate (72.73% and 66.67%) after the V. parahaemolyticus challenge. In sum, the results revealed that B. longum, as a feed additive at 107 CFU/g, enhanced growth performance. L. paracasei at 107 CFU/g and B. longum at 105 CFU/g can enhance nonspecific immune responses and immune-related gene expression, and 107 CFU/g L. paracasei has the highest resistance ability for V. parahaemolyticus. Thus, dietary supplementation with L. paracasei and B. longum may be a valuable approach in white shrimp aquaculture.


Assuntos
Bifidobacterium longum , Lacticaseibacillus paracasei , Penaeidae , Vibrio parahaemolyticus , Ração Animal/análise , Animais , Bifidobacterium longum/metabolismo , Dieta/veterinária , Imunidade Inata , Lacticaseibacillus paracasei/metabolismo , Monofenol Mono-Oxigenase , Muramidase/farmacologia , Superóxido Dismutase/metabolismo , Vibrio parahaemolyticus/fisiologia
3.
Dev Comp Immunol ; 131: 104380, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35245605

RESUMO

Red palm weevil, Rhynchophorus ferrugineus, is an invasive and destructive pest that causes serious damages to palm trees. Like other invertebrates, red palm weevil relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming the red palm weevil larvae with heat-killed Bacillus thuringiensis specifically increased survival of the larvae during a secondary lethal infection with live bacteria, and B. thuringiensis primed larvae also showed a higher clearance efficiency for this bacterium, which indicated that the red palm weevil larvae possessed a strong immune priming response. The degree of enhanced immune protection was positively correlated with hemocyte proliferation and the level of phagocytic ability of hemocytes. Moreover, the red palm weevil larvae primed by B. thuringiensis induced the continuous synthesis of serotonin in the hemolymph, which in turn enhanced the phagocytic ability and pathogen clearance ability of the host, representing an important mechanism for the red palm weevil to achieve priming protection. Our findings reveal a specific immune priming of the red palm weevil larvae mediated by the continuous secretion of serotonin, and provide new insights into the mechanisms of invertebrates immune priming.


Assuntos
Bacillus thuringiensis , Gorgulhos , Animais , Bacillus thuringiensis/fisiologia , Hemócitos , Larva , Fagocitose , Serotonina
4.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111099

RESUMO

External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red palm weevil larvae are prolific in this regard, producing large quantities of p-benzoquinone, which is present in their oral secretion. Benzoquinone with antimicrobial activity has been proven to be an active ingredient and key factor for external immunity in a previous study. To obtain a better understanding of the genetic and molecular basis of external immune secretions, we identify genes necessary for p-benzoquinone synthesis. Three novel ARSB genes, namely, RfARSB-0311, RfARSB-11581, and RfARSB-14322, are screened, isolated, and molecularly characterized on the basis of transcriptome data. To determine whether these genes are highly and specifically expressed in the secretory gland, we perform tissue/organ-specific expression profile analysis. The functions of these genes are further determined by examining the antimicrobial activity of the secretions and quantification of p-benzoquinone after RNAi. All the results reveal that the ARSB gene family can regulate the secretory volume of p-benzoquinone by participating in the biosynthesis of quinones, thus altering the host's external immune inhibitory efficiency.


Assuntos
Benzoquinonas/metabolismo , Larva/genética , Larva/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Gorgulhos/genética , Gorgulhos/imunologia , Animais , Líquidos Corporais/imunologia , Imunidade , Insetos/genética , Larva/imunologia , Interferência de RNA , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA