Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409514

RESUMO

This study aimed to decipher the mechanism of circular ribonucleic acids (circRNAs) in lower extremity arteriosclerosis obliterans (LEASO). First, bioinformatics analysis was performed for screening significantly down-regulated cardiac specific circRNA-circHAT1 in LEASO. The expression of circHAT1 in LEASO clinical samples was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of splicing factor arginine/serine-rich 1 (SFRS1), α-smooth muscle actin (α-SMA), Calponin (CNN1), cyclin D1 (CNND1) and smooth muscle myosin heavy chain 11 (SMHC) in vascular smooth muscle cells (VSMCs) was detected by Western blotting. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays were used to evaluate cell proliferation and migration, respectively. RNA immunoprecipitation (RNA-IP) and RNA pulldown verified the interaction between SFRS1 and circHAT1. By reanalyzing the dataset GSE77278, circHAT1 related to VSMC phenotype conversion was screened, and circHAT1 was found to be significantly reduced in peripheral blood mononuclear cells (PBMCs) of LEASO patients compared with healthy controls. Knockdown of circHAT1 significantly promoted the proliferation and migration of VSMC cells and decreased the expression levels of contractile markers. However, overexpression of circHAT1 induced the opposite cell phenotype and promoted the transformation of VSMCs from synthetic to contractile. Besides, overexpression of circHAT1 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced phenotype switch of VSMC cells. Mechanistically, SFRS1 is a direct target of circHAT1 to mediate phenotype switch, proliferation and migration of VSMCs. Overall, circHAT1 regulates SFRS1 to inhibit the cell proliferation, migration and phenotype switch of VSMCs, suggesting that it may be a potential therapeutic target for LEASO.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(8): 1140-1142, 2017 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-28801300

RESUMO

OBJECTIVE: Based on standard carotid endarterectomy, we performed modified carotid endarterectomy in two cases of carotid artery stenosis by changing the direction of the carotid artery incision to avoid restenosis of the internal carotid artery without using a patch. The two patients recovered smoothly without any complications. Compared with eversion or patch endarterectomy, this modified carotid endarterectomy avoids restenosis of the carotid artery and shortens operation time.

3.
Cell Physiol Biochem ; 42(6): 2492-2506, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848136

RESUMO

BACKGROUND: Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute to the development of vascular pathologies, such as atherosclerosis and post-angioplasty restenosis. The aim of this study was to determine whether miR-22-3p plays a role in regulating human artery vascular smooth muscle cell (HASMC) function and neointima formation. METHODS: Quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) were used to detect miR-22-3p expression in human arteries. Cell Counting Kit-8 (CCK-8) and EdU assays were performed to assess cell proliferation, and transwell and wound closure assays were performed to assess cell migration. Moreover, luciferase reporter assays were performed to identify the target genes of miR-22-3p. Finally, a rat carotid artery balloon-injury model was used to determine the role of miR-22-3p in neointima formation. RESULTS: MiR-22-3p expression was downregulated in arteriosclerosis obliterans (ASO) arteries compared with normal arteries, as well as in platelet-derived growth factor-BB (PDGF-BB)-stimulated HASMCs compared with control cells. MiR-22-3p overexpression had anti-proliferative and anti-migratory effects and dual-luciferase assay showed that high mobility group box-1 (HMGB1) is a direct target of miR-22-3p in HASMCs. Furthermore, miR-22-3p expression was negatively correlated with HMGB1 expression in ASO tissue specimens. Finally, LV-miR-22-3p-mediated miR-22-3p upregulation significantly suppressed neointimal hyperplasia specifically by reducing HMGB1 expression in vivo. CONCLUSIONS: Our results indicate that miR-22-3p is a key molecule in regulating HASMC proliferation and migration by targeting HMGB1 and that miR-22-3p and HMGB1 may be therapeutic targets in the treatment of human ASO.


Assuntos
Arteriosclerose Obliterante/patologia , Proteína HMGB1/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Arteriosclerose Obliterante/metabolismo , Sequência de Bases , Becaplermina , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/veterinária , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Humanos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA