Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 34(4): 727-739.e5, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38262418

RESUMO

Sustained visual attention allows us to process and react to unpredictable, behaviorally relevant sensory input. Sustained attention engages communication between the higher-order visual thalamus and its connected cortical regions. However, it remains unclear whether there is a causal relationship between oscillatory circuit dynamics and attentional behavior in these thalamo-cortical circuits. By using rhythmic optogenetic stimulation in the ferret, we provide causal evidence that higher-order visual thalamus coordinates thalamo-cortical and cortico-cortical functional connectivity during sustained attention via spike-field phase locking. Increasing theta but not alpha power in the thalamus improved accuracy and reduced omission rates in a sustained attention task. Further, the enhancement of effective connectivity by stimulation was correlated with improved behavioral performance. Our work demonstrates a potential circuit-level causal mechanism for how the higher-order visual thalamus modulates cortical communication through rhythmic synchronization during sustained attention.


Assuntos
Furões , Córtex Visual , Animais , Tálamo/fisiologia , Córtex Visual/fisiologia
2.
Electron. j. biotechnol ; 53: 87-94, Sep.2021. graf, ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1451559

RESUMO

BACKGROUND Diabetes is a metabolic disorder caused by defects in insulin production and activity. During disease progression, changes in lipid peroxidation cause structural modifications via production of free radicals. Fangchinoline is a well-known alkaloid present in Stephaniae tetrandrine S. Moore, which has demonstrated antioxidant, anticancer, and anti-inflammatory activities. RESULTS The present study analyzed the anti-diabetic and antioxidant effects of fangchinoline in male rats with streptozotocin-induced diabetes. Rats were divided into the following groups: normal control, diabetic, diabetic + fangchinoline 100 mg/kg, diabetic + fangchinoline 200 mg/kg and diabetic + glibencla mide 600 mg/kg. The treatment was administered orally for 45 consecutive days. Lipid peroxidation was substantially increased by >50% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. However, fangchinoline supplementation significantly reduced lipid peroxidation to near normal levels. Reactive oxygen species levels were substantially increased by >500% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. Fangchinoline supplementation reduced reactive oxygen species to near normal levels. Fangchinoline supplementation significantly improved superoxide dismutase, glutathione peroxidase, catalase, and reduced glutathione levels in diabetic rats. Total hexoses, sialic acid, hexosamines, and fucose were increased in diabetic rats, whereas fangchinoline supplementation significantly reduced these total hexoses, sialic acid, hexosamines, and fucose to near normal levels CONCLUSIONS Supplementation with fangchinoline led to significant attenuation of the levels of lipid peroxidation, ROS, and glycoprotein components such as total hexoses, hexosamines, sialic acid, and fucose, while improving antioxidant marker levels


Assuntos
Animais , Masculino , Ratos , Benzilisoquinolinas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio , Estreptozocina
3.
Nat Commun ; 12(1): 3151, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035240

RESUMO

Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.


Assuntos
Ritmo alfa/fisiologia , Tálamo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Visual/fisiologia , Animais , Simulação por Computador , Eletrodos Implantados , Eletroencefalografia , Feminino , Furões , Interneurônios/fisiologia , Imageamento por Ressonância Magnética , Masculino , Microeletrodos , Modelos Animais , Modelos Neurológicos , Rede Nervosa/fisiologia , Optogenética , Tálamo/citologia , Tálamo/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estimulação Transcraniana por Corrente Contínua/instrumentação , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA