Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stress Biol ; 4(1): 28, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847988

RESUMO

Owing to its versatile roles in almost all aspects of plants, FERONIA (FER), a receptor-like kinase of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) subfamily, has received extensive research interests during the past decades. Accumulating evidence has been emerged that FER homologs in horticultural crops also play crucial roles in reproductive biology and responses to environmental stimuli (abiotic and biotic stress factors). Here, we provide a review for the latest advances in the studies on FER homologs in modulating stress responses in horticultural crops, and further analyze the underlying mechanisms maintained by FER. Moreover, we also envisage the missing links in current work and provide a perspective for future studies on this star protein.

2.
Front Immunol ; 15: 1367053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756775

RESUMO

Background: With the worsening of the greenhouse effect, the correlation between the damp-heat environment (DH) and the incidence of various diseases has gained increasing attention. Previous studies have demonstrated that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this process remains unclear. Methods: We established a DH animal model to observe the impact of a high temperature and humidity environment on the mice. We sequenced the 16S rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as the levels of cytokines including interferon (IFN)-γ and interleukin (IL)-4 in serum. Results: Our results indicate that the intestinal macrophage infiltration and the expression of inflammatory genes were increased in mice challenged with DH for 14 days, while the M2 macrophages were decreased in Nlrp3 -/- mice. The alpha diversity of intestinal bacteria in Nlrp3 -/- mice was significantly higher than that in control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio. Transcriptomic analysis revealed 307 differentially expressed genes were decreased in Nlrp3 -/- mice compared with control mice, which was related to humoral immune response, complement activation, phagocytic recognition, malaria and inflammatory bowel disease. The ratio of IFN-γ/IL-4 was decreased in control mice but increased in Nlrp3 -/- mice. Conclusions: Our study found that the inflammation induced by DH promotes Th2-mediated immunity via NLRP3, which is closely related to the disruption of intestinal flora.


Assuntos
Microbioma Gastrointestinal , Temperatura Alta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Th2 , Animais , Camundongos , Alarminas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Células Th2/imunologia
4.
Langmuir ; 40(19): 10240-10249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688022

RESUMO

Dried bamboo shoots (DBS) are a natural resource with inherent silica content, which can serve as sacrificial templates for the formation of mesoporous carbon but also promote the generation of silicon carbide (SiC). Building on this, we introduced mesoporous and graphitic carbon/SiC (SiC/BSC) as the CDI electrode for copper ion (Cu2+) removal. Mesoporous carbon electrodes facilitate faster ion transport, diffusion, and electron-transfer pathways. Furthermore, SiC accelerates electron transfer and promotes faradic redox reactions during the charge and discharge processes. Consequently, the synergistic effect of SiC/BSC mesoporous carbon material leads to a promising electrode for Cu2+ capacitive deionization. Leveraging these unique properties, the SiC/BSC electrode material exhibits an outstanding CDI performance of 381.5 mg/g at 1.8 V. This study offers a strategy for the preparation of efficient mesoporous carbon materials as CDI electrodes, specifically tailored for the deionization of Cu2+ ions.

5.
BMC Pulm Med ; 24(1): 157, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549057

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is used when standard methods of standard treatment methods are not successful. Obese patients present unique challenges during ECMO due to large body size hindering sufficient flows, difficulties with patient positioning and anatomical landmark identification, and restricted radiology scans. This meta-analysis aims to investigate the impact of obesity on the outcomes of patients undergoing ECMO. METHODS: Databases (PubMed, Embase, and Scopus databases) were searched to identify relevant studies published until July 2023. Data were reported as odds ratios (OR) with 95% confidence interval (CI), and the descriptive data were reported as standard difference of means (SDM) by a random effects model. RESULTS: A literature search identified 345 studies. Of them, 18 studies met the inclusion criteria. The findings from the meta-analysis revealed no significant association between obesity and survival outcomes after ECMO (odds ratio (OR): 0.91, 95% confidence interval (CI): 0.70-1.17, p: 0.46). Moreover, no comparative significant differences were found between obese and non-obese individuals on the duration of ECMO procedure (standardized mean difference (SMD): 0.07, -0.03-0.17), length of hospital stay (-0.03, -0.19 to 0.12), and duration of ventilation support (-0.10, -0.44 to 0.24). CONCLUSION: The meta-analysis findings suggest no significant impact of obesity on the survival outcomes after the ECMO procedure. There was no significant impact of obesity on the duration of ECMO procedures, length of hospital stay, and duration of ventilation support.


Assuntos
Oxigenação por Membrana Extracorpórea , Obesidade , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Obesidade/complicações , Obesidade/terapia , Tempo de Internação/estatística & dados numéricos , Resultado do Tratamento
6.
Microb Pathog ; 189: 106573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354989

RESUMO

The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.


Assuntos
Anti-Infecciosos , Medicina Tradicional Chinesa , Animais , Humanos , Permeabilidade da Membrana Celular , Biofilmes , Candida albicans , Anti-Infecciosos/farmacologia , Misturas Complexas/farmacologia , Permeabilidade , Testes de Sensibilidade Microbiana , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA