Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Cell ; 13(12): 940-953, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35384604

RESUMO

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Animais , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Cricetinae , Humanos , Camundongos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
2.
Comput Struct Biotechnol J ; 19: 5568-5577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712400

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes severe infection in humans characterized by an acute febrile illness with thrombocytopenia and hemorrhagic complications, and a mortality rate of up to 30%. Understanding on virus-host protein interactions may facilitate the identification of druggable antiviral targets. Herein, we utilized liquid chromatography-tandem mass spectrometry to characterize the SFTSV interactome in human embryonic kidney-derived permanent culture (HEK-293T) cells. We identified 445 host proteins that co-precipitated with the viral glycoprotein N, glycoprotein C, nucleoprotein, or nonstructural protein. A network of SFTSV-host protein interactions based on reduced viral fitness affected upon host factor down-regulation was then generated. Screening of the DrugBank database revealed numerous drug compounds that inhibited the prioritized host factors in this SFTSV interactome. Among these drug compounds, the clinically approved artenimol (an antimalarial) and omacetaxine mepesuccinate (a cephalotaxine) were found to exhibit anti-SFTSV activity in vitro. The higher selectivity of artenimol (71.83) than omacetaxine mepesuccinate (8.00) highlights artenimol's potential for further antiviral development. Mechanistic evaluation showed that artenimol interfered with the interaction between the SFTSV nucleoprotein and the host glucose-6-phosphate isomerase (GPI), and that omacetaxine mepesuccinate interfered with the interaction between the viral nucleoprotein with the host ribosomal protein L3 (RPL3). In summary, the novel interactomic data in this study revealed the virus-host protein interactions in SFTSV infection and facilitated the discovery of potential anti-SFTSV treatments.

3.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907519

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Animais , Células CACO-2 , Chlorocebus aethiops , Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Células Vero
4.
Arch Virol ; 165(12): 2837-2846, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025197

RESUMO

Pseudorabies virus (PRV) is a pig pathogen that causes substantial economic losses to the pig industry. Infection of host cells by PRV is mediated by the membrane proteins nectin1 and nectin2, which are presumed to be receptors for PRV infection. Here, we generated nectin1/2 knockout (KO) cells with the aim of establishing a PRV-resistant cell model. Nectin1 and 2 were ablated in PK15 cells by CRISPR/Cas9-mediated gene targeting. PRV infection in either nectin1 or nectin2 KO cells showed a significant reduction in viral growth compared with wild-type (WT) cells. We further simultaneously deleted nectin1 and nectin2 in PK15 cells and found that double KO cells showed no further increase in resistance to PRV compared with single gene-KO cells, despite being more resistant than WT. By investigating the cell entry steps of PRV infection, we found that nectin1 or/and nectin2 KO did not greatly affect virus attachment or internalization to cells but blocked cell-to-cell spread. Our results demonstrate that KO of either nectin1 or nectin2 confers PRV resistance to PK15 cells. This strategy could be applied to establish PRV-resistant pigs with nectin1/2 modifications to benefit the pig industry.


Assuntos
Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/fisiologia , Nectinas/genética , Pseudorraiva/virologia , Animais , Linhagem Celular , Marcação de Genes/métodos , Mutação , Suínos , Doenças dos Suínos/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
5.
Int J Biochem Cell Biol ; 99: 154-160, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655920

RESUMO

The main DNA repair pathways, nonhomologous end joining (NHEJ) and homology-directed repair (HDR), are complementary to each other; hence, interruptions of the NHEJ pathway can favor HDR. Improving HDR efficiency in animal primary fibroblasts can facilitate the generation of gene knock-in animals with agricultural and biomedical values by somatic cell nuclear transfer. In this study, we used siRNA to suppress the expression of Ku70 and Ku80, which are the key factors in NHEJ pathway, to investigate the effect of Ku silencing on the HDR efficiency in pig fetal fibroblasts. Down-regulation of Ku70 and Ku80 resulted in the promotion of the frequencies of multiple HDR pathways, including homologous recombination, single strand annealing, and single-stranded oligonucleotide-mediated DNA repair. We further evaluated the effects of Ku70 and Ku80 silencing on promoting HR-mediated knock-in efficiency in two porcine endogenous genes and found a significant increase in the amount of knock-in cells in Ku-silenced fibroblasts compared with control. The RNA interference strategy will benefit the generation of cell lines and organisms with precise genetic modifications.


Assuntos
Reparo do DNA por Junção de Extremidades , Feto/metabolismo , Fibroblastos/metabolismo , Recombinação Homóloga , Autoantígeno Ku/metabolismo , Animais , Células Cultivadas , Feto/citologia , Fibroblastos/citologia , Autoantígeno Ku/antagonistas & inibidores , Autoantígeno Ku/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA