RESUMO
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
RESUMO
Depression is a pervasive and often undetected mental health condition, which poses significant challenges for early diagnosis due to its silent and subtle nature. To evaluate exhaled volatile organic compounds (VOCs) as non-invasive biomarkers for the detection of depression using a virtual surface acoustic wave sensors array (VSAW-SA). A total of 245 participants were recruited from the Hangzhou Community Health Service Center, including 38 individuals diagnosed with depression and 207 control subjects. Breath samples were collected from all participants and subjected to analysis using VSAW-SA. Univariate and multivariate analyses were employed to assess the relationship between VOCs and depression. The findings revealed that the responses of virtual sensor ID 14, 44, 59, and 176, which corresponded respectively to ethanol, trichloroethylene or isoleucine, octanoic acid or lysine, and an unidentified compound, were sensitive to depression. Taking into account potential confounders, these sensor responses were utilized to calculate a depression detection indicator. It has a sensitivity of 81.6% and a specificity of 81.6%, with an area under the curve of 0.870 (95% CI = 0.816-0.923). Conclusions: exhaled VOCs as non-invasive biomarkers of depression could be detected by a VSAW-SA. Large-scale cohort studies should be conducted to confirm the potential ability of the VSAW-SA to diagnose depression.
Assuntos
Biomarcadores , Testes Respiratórios , Depressão , Expiração , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Masculino , Feminino , Testes Respiratórios/métodos , Pessoa de Meia-Idade , Biomarcadores/análise , Depressão/diagnóstico , AdultoRESUMO
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. Despite of a steadily increasing in morbidity and mortality, there is still no effective therapy. Gut microbial dysbiosis and its derived-metabolites disorder have been shown to play an important role in the development of AP, however, little is known regarding the crosstalk between gut microbiota and metabolites. In this study, we assessed the alterations in gut microbiota and metabolites by constructing three AP mouse models by means of metagenomic and metabolomic sequencing, and further clarified their relationship by correlation analysis. The results revealed that each model exhibited unique flora and metabolite profiles. KEGG analysis showed that the differential flora and metabolite-enriched pathway functions were correlated with lipid metabolism and amino acid metabolism. Moreover, two core differential bacterial species on Burkholderiales bacterium YL45 and Bifidobacterium pseudolongum along with eleven differential metabolites appeared to exert certain effects during the course of AP. In conclusion, further exploration of the crosstalk between microbiota and derived metabolites may provide novel insights and strategies into the diagnosis and treatment of AP.
Assuntos
Microbioma Gastrointestinal , Metabolômica , Metagenômica , Pancreatite , Pancreatite/microbiologia , Pancreatite/metabolismo , Animais , Metabolômica/métodos , Metagenômica/métodos , Camundongos , Metaboloma , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Doença AgudaRESUMO
BACKGROUND: The association between the length of sleep and atherosclerosis has been reported in many observational studies. However, little is known about its significance as a risk factor for atherosclerosis or as a negative consequence of atherosclerosis. OBJECTIVE: This study aimed to assess the causal association between sleep duration and the risk of atherosclerosis using publicly available genome-wide association studies (GWAS) summary statistics. METHODS: We employed a two-sample Mendelian randomization (MR) method with 2 cohorts from MRC-IEU (n=460,099) and UK Biobank (n=361,194) to investigate the causal association between sleep duration and the risk of atherosclerosis. Three methods including the inverse-variance weighted (IVW) technique, Robust adjusted profile score (RAPS), and simple-and weighted-median approach were used to obtain reliable results, and an odds ratio with a 95% confidence interval (CI) was calculated. P<0.05 was considered as a statistical difference. In addition, MR-Egger regression, Radial MR, MR-PRESSO, and leave-one-out analyses were used to assess the possible pleiotropy effects. RESULTS: No causal association of sleep duration with atherosclerosis was found [OR (95%CI): 0.90 (0.98-1.00), p = 0.186]. Leave-one-out, MR-Egger, and MR-PRESSO analyses failed to detect horizontal pleiotropy. CONCLUSIONS: This MR analysis indicated no causal association between genetically predicted sleep duration and atherosclerosis across European populations.
FUNDAMENTO: A associação entre a duração do sono e a aterosclerose foi relatada em muitos estudos observacionais. No entanto, pouco se sabe sobre a sua importância como fator de risco para aterosclerose ou como consequência negativa da aterosclerose. OBJETIVO: Este estudo teve como objetivo avaliar a associação causal entre a duração do sono e o risco de aterosclerose usando estatísticas resumidas de estudos de associação genômica ampla (GWAS) disponíveis publicamente. MÉTODOS: Empregamos um método de randomização mendeliana (RM) de duas amostras com 2 coortes do MRC-IEU (n = 460.099) e do UK Biobank (n = 361.194) para investigar a associação causal entre a duração do sono e o risco de aterosclerose. Três métodos, incluindo a técnica de variância inversa ponderada (IVW), escore de perfil ajustado robusto (RAPS) e abordagem de mediana simples e ponderada, foram usados para obter resultados confiáveis, e uma razão de chances com intervalo de confiança (IC) de 95% foi calculada. P<0,05 foi considerado diferença estatística. Além disso, foram utilizadas análises de regressão: MR-Egger regression, Radial MR, MR-PRESSO e leave-one-out para avaliar os possíveis efeitos de pleiotropia. RESULTADOS: Não foi encontrada associação causal entre duração do sono e aterosclerose [OR (IC95%): 0,90 (0,98-1,00), p = 0,186]. As análises Leave-one-out, MR-Egger, e MR-PRESSO não conseguiram detectar pleiotropia horizontal. CONCLUSÕES: Esta análise de RM não indicou nenhuma associação causal entre a duração do sono geneticamente prevista e a aterosclerose nas populações europeias.
Assuntos
Aterosclerose , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sono , Humanos , Aterosclerose/genética , Sono/genética , Sono/fisiologia , Fatores de Risco , Fatores de Tempo , Feminino , Masculino , Pessoa de Meia-Idade , Duração do SonoRESUMO
Phosphorus (P) is an essential macronutrient for plant growth and development. Rapid alkalisation factors (RALFs) play crucial roles in plant responses to nutrient stress. However, the functions of Glycine max RALFs (GmRALFs) under low P (LP) stress remain elusive. In this study, we first identified 27 GmRALFs in soybean and then revealed that, under LP conditions, GmRALF10, GmRALF11, and GmRALF22 were induced in both roots and leaves, whereas GmRALF5, GmRALF6, and GmRALF25 were upregulated in leaves. Furthermore, GmRALF22 was found to be the target gene of the transcription factor GmPHR1, which binds to the P1BS cis-element in the promoter of GmRALF22 via electrophoretic mobility shift assay and dual-luciferase experiments. Colonisation with Bacillus subtilis which delivers GmRALF22, increases the expression of the high-affinity phosphate (Pi) transporter genes GmPT2, GmPT11, GmPT13, and GmPT14, thus increasing the total amount of dry matter and soluble Pi in soybeans. RNA sequencing revealed that GmRALF22 alleviates LP stress by regulating the expression of jasmonic acid- (JA-), salicylic acid- (SA-), and immune-related genes. Finally, we verified that GmRALF22 was dependent on FERONIA (FER) to promote Arabidopsis primary root growth under LP conditions. In summary, the GmPHR1-GmRALF22 module positively regulates soybean tolerance to LP.
Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Fósforo , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
ABSTRACT: Tailgut cyst adenocarcinoma is a rare malignant tumor. We present 68 Ga-FAPI PET/CT findings of tailgut cyst adenocarcinoma in a 46-year-old woman. Tailgut cyst adenocarcinoma on 68 Ga-FAPI PET/CT showed increased tracer uptake. This case demonstrates the potential value of 68 Ga-FAPI PET/CT for evaluating tailgut cyst adenocarcinoma.
Assuntos
Adenocarcinoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Pessoa de Meia-Idade , Feminino , Adenocarcinoma/diagnóstico por imagem , Radioisótopos de Gálio , Cistos/diagnóstico por imagemRESUMO
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Homeostase , Triazóis , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Triazóis/toxicidade , Triazóis/farmacologia , Homeostase/efeitos dos fármacos , Fungicidas Industriais/toxicidade , RNA Ribossômico 16S/genética , Compostos de EpóxiRESUMO
Lowering the operating temperature of solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) to reduce system cost and increase lifetime is the key to widely deploy this highly efficient energy technology, but the high cathode polarization losses at low temperatures limit overall cell performance. Here we demonstrate that by engineering a universal ceria-based scaffold with infiltrated nanoscale electrocatalysts, a low cathode polarization <0.25 Ω·cm2 with remarkably high performance 1 W/cm2 at 550 °C is achieved. The combination of low processing and operating temperature restrains the nanosized electrocatalysts, not only allowing fast oxygen transport but also providing an essential electronically connective network to facilitate electrochemical reactions without requiring the high-temperature processing of a separate cathode layer. Moreover, excellent SOFC durability was demonstrated for over 500 h. This work shows a promising pathway to reduce processing/system costs with all scalable ceramic processing techniques for the future development of low-temperature SOFCs and SOECs.
RESUMO
Carbon-based magnetic nanocomposites as promising lightweight electromagnetic wave (EMW) absorbents are expected to address critical issues caused by electromagnetic pollution. Herein, Fe3O4 nanoparticles embedded into a 3D N-rich porous carbon nanohoneycomb (Fe3O4@NC) were developed via the pyrolysis of an in-situ-polymerized compound of m-phenylenediamine initiated by FeCl2 in the presence of NaCl crystals as templates. Results demonstrate that Fe3O4@NC features highly dispersed Fe3O4 nanoparticles into an ultrahigh specific pyridinic-N doping carbon matrix, resulting in excellent impedance matching characteristics and electromagnetic wave absorbing capability with the biggest effective absorption bandwidth (EAB) of up to 7.1 GHz and the minimum reflective loss (RLmin) of up to -65.5 dB in the thin thickness of 2.5 and 2.3 mm, respectively, which also outperforms the majority of carbon-based absorbers reported. Meanwhile, its high absorption performance is further demonstrated by an ethylene propylene diene monomer wave absorbing patch filled with 8.0 wt % Fe3O4@NC, which can completely shield a 5G signal in a mobile phone. In addition, theory calculation reveals that there is a strongest dx2-Pz orbital hybridization interaction between Fe3O4 clusters and pyridinic-N dopants in the carbon network, compared with other kinds of N dopants, which can not only generate more dipoles of carbon networks but also increase net magnetic moments of Fe3O4, thereby leading to a coupling effect of efficient dielectric and magnetic losses. This work provides new insights into the precise design and synthesis of carbon-based magnetic composites with specific interface interactions and morphological effects for high-efficiency EMW absorption materials.
RESUMO
OBJECTIVE: To examine the manifestation of cognitive control deficit of children with different levels of hyperactivity, an "at risk" dimension for ADHD. METHOD: A group of children with high hyperactivity (N = 40) and another group of children with low levels of hyperactivity (N = 38) performed a modified stop-signal anticipation task, a revised Go/NoGo task, and the AX-continuous performance test (AX-CPT). RESULTS: Children with higher levels of hyperactivity displayed: (1) significantly prolonged stop signal reaction time (SSRT) in the modified stop-signal anticipation task; (2) no notable differences in commission errors in the revised Go/NoGo task; (3) increased reaction time (RT) in stop-signal task and Go/NoGo task with increased probabilities of stop or NoGo signal; and (4) positive proactive behavioral index scores in AX-CPT. CONCLUSION: The results suggested that children with heightened hyperactivity exhibited impaired reactive control, especially for responses already underway, but preserved proactive control. Further studies concerning these children are warranted.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Testes Neuropsicológicos , Tempo de Reação , Humanos , Criança , Masculino , Feminino , Tempo de Reação/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Desempenho Psicomotor/fisiologia , Função Executiva/fisiologia , Inibição Reativa , Inibição ProativaRESUMO
IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.
Assuntos
Grão Comestível , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Plantas Geneticamente Modificadas/genética , UbiquitinaçãoRESUMO
BACKGROUND: Obesity is an important risk factor for kidney stones(KS). Chinese Visceral Adiposity Index (CVAI), as a specific indicator for visceral obesity in the Chinese population, can more accurately assess the visceral fat content in Chinese individuals compared to Visceral Adiposity Index (VAI). However, the association between CVAI and risk for KS has not been studied. METHODS: A total of 97,645 participants from a health screening cohort underwent ultrasound examinations for the diagnosis of kidney stones, along with measurements of their CVAI. Logistic regressions were utilized to determine the relationship between different quartiles of CVAI and the incidence of kidney stones. Simultaneously, subgroup analysis and the computation of dose-response curves were employed to pinpoint susceptible populations. RESULTS: Among the participants, 2,888 individuals (3.0%) were diagnosed with kidney stones. The mean CVAI values ± standard deviation for the four groups were: Q1 (18.42 ± 19.64), Q2 (65.24 ± 10.39), Q3 (98.20 ± 9.11), and Q4 (140.40 ± 21.73). In the fully adjusted multivariable model, CVAI was positively correlated with urolithiasis (OR = 1.001; 95% CI = 1.000, 1.002). Compared with the first quartile of CVAI, the population in the fourth quartile of CVAI had a higher prevalence of kidney stones (OR = 1.231; 95% CI = 1.066, 1.415). Through subgroup analysis, a positive correlation between CVAI and the risk of kidney stones was found in non-smokers (OR = 1.001, 95%CI:1.000, 1.002), non-drinkers (OR = 1.001, 95%CI:1.000, 1.002), non-hypertensive subgroups (OR = 1.003, 95%CI:1.002, 1.003), and non-diabetes subgroups (OR = 1.001, 95%CI:1.000, 1.002). CONCLUSION: The findings suggest that CVAI could be a reliable and effective biomarker for assessing the potential risk of kidney stone prevalence, with significant implications for the primary prevention of kidney stones and public health.
Assuntos
Gordura Intra-Abdominal , Cálculos Renais , Obesidade Abdominal , Ultrassonografia , Humanos , Masculino , Feminino , Cálculos Renais/epidemiologia , Cálculos Renais/diagnóstico por imagem , Estudos Transversais , Pessoa de Meia-Idade , China/epidemiologia , Adulto , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/complicações , Obesidade Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/diagnóstico por imagem , Fatores de Risco , Programas de Rastreamento/métodos , Adiposidade , Idoso , População do Leste AsiáticoRESUMO
With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/ß-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.
Assuntos
Coração , Triazóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Cardiotoxicidade , Fungicidas Industriais/toxicidade , Coração/efeitos dos fármacos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Triazóis/toxicidade , Regulação para Cima , Poluentes Químicos da Água/toxicidadeRESUMO
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry's chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries.
RESUMO
PURPOSE: Helicobacter pylori (H. pylori) infection has been reported to be associated with multiple metabolic diseases. However, the connection between H. pylori infection and gout has not been explored previously. Our study aimed to investigate the association of gout and H. pylori infection in hyperuricemia population in China. PATIENTS AND METHODS: This cross-sectional study was performed among the subjects who underwent health checkup in our health promotion center from January 1, 2020 to December 31, 2021. A total of 53,629 subjects with a mean age of 44.2 years were included in this study. H. pylori infection was defined as a positive [13]C-urea breath test. The effect of H. pylori infection on gout was assessed by multiple logistic regression analysis. RESULTS: 720 subjects with gout and 15,077 subjects with asymptomatic hyperuricemia (> 420 µmol/L in male and > 360 µmol/L in female) were enrolled. The prevalence rates of H. pylori infection, hyperuricemia and gout were 26.3%, 29.5%, 1.3%, respectively. The prevalence rate of H. pylori infection was significantly higher in subjects with gout than in those with asymptomatic hyperuricemia (35.0% vs. 27.2%; P<0.001). Multiple logistic regression analysis showed that H. pylori infection was associated with an increased risk of gout independent of serum uric acid level in hyperuricemia population (odds ratio [OR]: 1.320, 95% confidence interval [CI]: 1.124-1.550, P = 0.001). CONCLUSION: H. pylori infection is positively associated with higher risk of gout in hyperuricemia population. The causal relationship and potential mechanism between H. pylori infection and gout warrants further investigation.
RESUMO
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Assuntos
Digestão , Etanol , Fagopyrum , Quercetina , Rutina , Amido , Fagopyrum/química , Amido/química , Quercetina/química , Etanol/química , Viscosidade , Rutina/química , Tamanho da Partícula , Extratos Vegetais/química , Modelos Biológicos , Difração de Raios XRESUMO
Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1ß and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.
Assuntos
Falência Hepática Aguda , Vitis , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Administração OralRESUMO
OBJECTIVE: This study was designed to explore the effect of 5E rehabilitation mode (encouragement, education, exercise, employment, and evaluation) in patients with aortic dissection (AD) complicated by obstructive sleep apnea (OSA). METHODS: Patients with Stanford type B AD (TBAD) complicated by OSA were admitted to Guangdong Provincial People's Hospital from January 2019 to December 2020. They were randomly divided into an experimental group and a control group. After discharge, patients in the control group were given routine nursing and follow-up education, whereas patients in the experimental group were given 5E rehabilitation management mode-based nursing and follow-up education. Upon the nursing intervention, the differences in polysomnography (PSG) parameters, medication adherence, quality of life, blood pressure, and heart rate of patients between the two groups were compared. Logistic regression analysis was performed to evaluate the risk factors for the occurrence of adverse aortic events. RESULTS: A total of 89 patients were enrolled, 49 in the experimental group and 40 in the control group. After the intervention, the control of heart rate, systolic blood pressure, medication adherence, PSG parameters, and quality of life scores in the experimental group were significantly better than those in the control group (P<0.05). The incidence of adverse aortic events including aortic rupture and progressive aortic dilation in the experimental group was significantly lower than that in the control group (P < 0.05). Logistic regression analysis revealed that acute TBAD [odds ratio (OR) = 15.069; 95%confidence interval (CI), 1.738-130.652; P=0.014], history of chronic kidney disease (OR=10.342; 95%CI, 1.056-101.287; P=0.045), and apnea hypopnea index (AHI) ≥ 30 (OR=2.880; 95%CI, 1.081-9.51; P=0.036) were adverse factors affecting adverse aortic events; while 5E rehabilitation management mode (OR=0.063; 95%CI, 0.008-0.513; P=0.010) was a favorable factor for occurrence of adverse aortic events. CONCLUSION: The findings suggest that continuous nursing based on information carrier 5E rehabilitation management significantly enhanced medication adherence, improved patients' overall quality of life, and decreased the incidence of adverse aortic events in patients TBAD patients and OSA.
Assuntos
Dissecção Aórtica , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/terapia , Apneia Obstrutiva do Sono/enfermagem , Dissecção Aórtica/reabilitação , Dissecção Aórtica/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Qualidade de VidaRESUMO
Lakes serve as vital reservoirs of dissolved organic matter (DOM) and play pivotal roles in biogeochemical carbon cycles. However, the sources and compositions of DOM in freshwater lakes and their potential effects on lake sediment carbon pools remain unclear. In this study, seven inflowing rivers in the Lake Taihu basin were selected to explore the potential effects of multi-source DOM inputs on the stability of the lake sediment carbon pool. The results showed the high concentrations of dissolved organic carbon in the Lake Taihu basin, accompanied by a high complexity level. Lignins constituted the majority of DOM compounds, surpassing 40% of the total, while the organic carbon content was predominantly composed of humic acids (1.02-3.01 g kg-1). The high amounts of lignin oxidative cleavage led to CHO being the main molecular structure in the DOM of the seven rivers. The carbon constituents within the sediment carbon reservoir exhibited a positive correlation with dissolved CH4 and CO2, with a notable emphasis on humic acid and dissolved CH4 (R2 = 0.86). The elevated concentration of DOM, coupled with its intricate composition, contributed to the increases in dissolved greenhouse gases (GHGs). Experiments showed that the mixing of multi-source DOM can accelerate the organic carbon mineralization processes. The unit carbon emission efficiency was highest in the mixed group, reaching reached 160.9 µmolâCg-1, which also exhibited a significantly different carbon pool. The mixed decomposition of DOM from different sources influenced the roles of the lake carbon pool as source and sink, indicating that the multi-source DOM of this lake basin was a potential driving factor for increased carbon emissions. These findings have improved our understanding of the sources and compositions of DOM in lake basins and revealed their impacts on carbon emissions, thereby providing a theoretical basis for improving assessments of lake carbon emissions.
Assuntos
Matéria Orgânica Dissolvida , Gases de Efeito Estufa , Lagos/análise , Lagos/química , Carbono , Rios , Substâncias Húmicas/análise , ChinaRESUMO
Resumo Fundamento: A associação entre a duração do sono e a aterosclerose foi relatada em muitos estudos observacionais. No entanto, pouco se sabe sobre a sua importância como fator de risco para aterosclerose ou como consequência negativa da aterosclerose. Objetivo: Este estudo teve como objetivo avaliar a associação causal entre a duração do sono e o risco de aterosclerose usando estatísticas resumidas de estudos de associação genômica ampla (GWAS) disponíveis publicamente. Métodos: Empregamos um método de randomização mendeliana (RM) de duas amostras com 2 coortes do MRC-IEU (n = 460.099) e do UK Biobank (n = 361.194) para investigar a associação causal entre a duração do sono e o risco de aterosclerose. Três métodos, incluindo a técnica de variância inversa ponderada (IVW), escore de perfil ajustado robusto (RAPS) e abordagem de mediana simples e ponderada, foram usados para obter resultados confiáveis, e uma razão de chances com intervalo de confiança (IC) de 95% foi calculada. P<0,05 foi considerado diferença estatística. Além disso, foram utilizadas análises de regressão: MR-Egger regression, Radial MR, MR-PRESSO e leave-one-out para avaliar os possíveis efeitos de pleiotropia. Resultados: Não foi encontrada associação causal entre duração do sono e aterosclerose [OR (IC95%): 0,90 (0,98-1,00), p = 0,186]. As análises Leave-one-out, MR-Egger, e MR-PRESSO não conseguiram detectar pleiotropia horizontal. Conclusões: Esta análise de RM não indicou nenhuma associação causal entre a duração do sono geneticamente prevista e a aterosclerose nas populações europeias.
Abstract Background: The association between the length of sleep and atherosclerosis has been reported in many observational studies. However, little is known about its significance as a risk factor for atherosclerosis or as a negative consequence of atherosclerosis. Objective: This study aimed to assess the causal association between sleep duration and the risk of atherosclerosis using publicly available genome-wide association studies (GWAS) summary statistics. Methods: We employed a two-sample Mendelian randomization (MR) method with 2 cohorts from MRC-IEU (n=460,099) and UK Biobank (n=361,194) to investigate the causal association between sleep duration and the risk of atherosclerosis. Three methods including the inverse-variance weighted (IVW) technique, Robust adjusted profile score (RAPS), and simple-and weighted-median approach were used to obtain reliable results, and an odds ratio with a 95% confidence interval (CI) was calculated. P<0.05 was considered as a statistical difference. In addition, MR-Egger regression, Radial MR, MR-PRESSO, and leave-one-out analyses were used to assess the possible pleiotropy effects. Results: No causal association of sleep duration with atherosclerosis was found [OR (95%CI): 0.90 (0.98-1.00), p = 0.186]. Leave-one-out, MR-Egger, and MR-PRESSO analyses failed to detect horizontal pleiotropy. Conclusions: This MR analysis indicated no causal association between genetically predicted sleep duration and atherosclerosis across European populations.