Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400961, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534173

RESUMO

Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.

2.
ACS Appl Mater Interfaces ; 16(4): 4763-4771, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38165822

RESUMO

The advent of liquid-solid triboelectric nanogenerators (LS-TENGs) has ushered in a new era for harnessing and using energy derived from water. To date, extensive research has been conducted to enhance the output of LS-TENGs, thereby improving water utilization efficiency and facilitating their practical application. However, in contrast to intricate chemical treatment methods and specialized structures, a straightforward operational process and cost-effective materials are more conducive to the widespread adoption of LS-TENGs in practical applications. This work presents a novel method to enhance the output of LS-TENGs by increasing the liquid-solid contact area. The approach involves creating roughness on the solid surface through sandpaper grinding, which is simple in design and easy to operate and significantly reduces the cost of the experiment. The theory is applied to the solid triboelectric layer commonly used in the LS-TENG, demonstrating its universality and wide applicability to improve the output of the LS-TENG. The practical performance of the device is demonstrated by charging the capacitor and external load and driving the hygrometer and commercial 5 W LED light bulb, which can directly light up 300 commercial light-emitting diodes (LEDs) driven by a drop of water. This work provides a new method for the optimization of LS-TENGs and contributes to the wide application of LS-TENGs. This is a significant step forward in the field of energy harvesting and utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA