Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
bioRxiv ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39484485

RESUMO

Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary: We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.

2.
Mikrochim Acta ; 191(11): 678, 2024 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420129

RESUMO

Methidathion (MTDT), a common organophosphorus pesticide with high insecticidal activity, is widely used for pest control. However, the misuse of MTDT leads to widespread residues and endangers human health. Therefore, it is crucial to develop a simple and highly sensitive method for the detection of MTDT residues. Herein, ZIF-90/MnO2/g-C3N4/Fe3O4 composite particles were synthesized: The  MnO2 nanosheets could absorb the energy of the excited g-C3N4 to quench the ECL of g-C3N4 while ZIF-90 acted as a mimetic enzyme to catalyze the formation of thiocholine from MTDT. The thiocholine caused the reduction of MnO2 to Mn2+, restoring the ECL signal of g-C3N4. Combined with molecular imprinting technique, an electrochemiluminescence sensor was constructed for the determination of MTDT. The determination range was 1.00 × 10-9 ~ 7.00 × 10-7 g/L, and the detection limit was 6.58 × 10-10 g/L. Structurally similar organophosphorus pesticides showed no cross-reactivity. The method has high sensitivity and specificity, and has been successfully applied to the determination of MTDT residue in fruits with recoveries in the range 93.75% ~ 102.37%.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Compostos de Manganês , Compostos Organotiofosforados , Óxidos , Compostos de Manganês/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Óxidos/química , Compostos Organotiofosforados/análise , Compostos Organotiofosforados/química , Impressão Molecular , Grafite/química , Zeolitas/química , Inseticidas/análise , Compostos de Nitrogênio/química , Nanopartículas de Magnetita/química , Nitrilas/química
3.
PeerJ Comput Sci ; 10: e2260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314711

RESUMO

Point clouds are highly regarded in the field of 3D object detection for their superior geometric properties and versatility. However, object occlusion and defects in scanning equipment frequently result in sparse and missing data within point clouds, adversely affecting the final prediction. Recognizing the synergistic potential between the rich semantic information present in images and the geometric data in point clouds for scene representation, we introduce a two-stage fusion framework (TSFF) for 3D object detection. To address the issue of corrupted geometric information in point clouds caused by object occlusion, we augment point features with image features, thereby enhancing the reference factor of the point cloud during the voting bias phase. Furthermore, we implement a constrained fusion module to selectively sample voting points using a 2D bounding box, integrating valuable image features while reducing the impact of background points in sparse scenes. Our methodology was evaluated on the SUNRGB-D dataset, where it achieved a 3.6 mean average percent (mAP) improvement in the mAP@0.25 evaluation criterion over the baseline. In comparison to other great 3D object detection methods, our method had excellent performance in the detection of some objects.

4.
Heliyon ; 10(12): e32494, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38948030

RESUMO

Objective: To explore the potential targets for melatonin in the treatment of periodontitis through network pharmacologic analysis and experimental validation via in vivo animal models and in vitro cellular experiments. Materials and methods: In this study, we first screened melatonin targets from Pharm Mapper for putative targets, Drug Bank, and TCMSP databases for known targets. Then, disease database was searched and screened for differential expressed genes associated with periodontitis. The intersection of disease and melatonin-related genes yielded potential target genes of melatonin treatment for periodontitis. These target genes were further investigated by protein-protein interaction network and GO/KEGG enrichment analysis. In addition, the interactions between melatonin and key target genes were interrogated by molecular docking simulations. Then, we performed animal studies to validate the therapeutic effect of melatonin by injecting melatonin into the peritoneal cavity of ligation-induced periodontitis (LIP) mice. The effects of melatonin on the predicted target proteins were also analyzed using Western blot and immunofluorescence techniques. Finally, we constructed an in vitro cellular model and validated the direct effect of melatonin on the predicted targets by using qPCR. Results: We identified 8 potential target genes by network pharmacology analysis. Enrichment analysis suggests that melatonin may treat periodontitis by inhibiting the expression of three potential targets (MPO, MMP8, and MMP9). Molecular docking results showed that melatonin could effectively bind to MMP8 and MMP9. Subsequently, melatonin was further validated in a mouse LIP model to inhibit the expression of MPO, MMP8, and MMP9 in the periodontal tissue. Finally, we verified the direct effect of melatonin on the mRNA expression of MPO, MMP8, and MMP9 in an in vitro cellular model. Conclusions: Through a combination of network pharmacology and experimental validation, this study provides a more comprehensive understanding of the mechanism of melatonin to treat periodontitis. Our study suggests that MPO, MMP8, and MMP9 as key target genes of melatonin to treat periodontitis. These findings present a more comprehensive basis for further investigation into the mechanisms of pharmacological treatment of periodontitis by melatonin.

5.
Nanomedicine (Lond) ; 19(17): 1525-1539, 2024 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-39012207

RESUMO

Aim: This study aims to investigate the effects of large extracellular vesicles (EVs) induced by pluripotent stem cell-derived mesenchymal stem cells on lower limb ischemic disease and explore its potential mechanisms. Materials & methods: The pathology of muscles was accessed by H&E staining and immunofluorescence staining. In vitro, we conducted wound-healing assay, tube formation assay, RT qPCR, ELISA, RNA sequencing and proteomic analysis. Results: iMSCs-lEVs alleviated the injury of ischemic lower limb and promoted the recovery of lower limb function. In vitro, iMSCs-lEVs promoted the proliferation, migration, and angiogenesis of HMEC-1 cells by regulating the ERK/MAPK signing pathway. Conclusion: This study demonstrated that iMSCs-lEVs promoted endothelial cell angiogenesis via the ERK/MAPK signaling pathway, thereby improving function after lower limb ischemic injury.


[Box: see text].


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Isquemia , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Vesículas Extracelulares/metabolismo , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Isquemia/terapia , Isquemia/metabolismo , Isquemia/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proliferação de Células , Extremidade Inferior/irrigação sanguínea , Movimento Celular , Masculino , Angiogênese
6.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883769

RESUMO

DNA damage and cytoplasmic DNA induce type-1 interferon (IFN-1) and potentiate responses to immune checkpoint inhibitors. Our prior work found that inhibitors of the DNA damage response kinase ATR (ATRi) induce IFN-1 and deoxyuridine (dU) incorporation by DNA polymerases, akin to antimetabolites. Whether and how dU incorporation is required for ATRi-induced IFN-1 signaling is not known. Here, we show that ATRi-dependent IFN-1 responses require uracil DNA glycosylase (UNG)-initiated base excision repair and STING. Quantitative analyses of nine distinct nucleosides reveals that ATRi induce dU incorporation more rapidly in UNG wild-type than knockout cells, and that induction of IFN-1 is associated with futile cycles of repair. While ATRi induce similar numbers of micronuclei in UNG wild-type and knockout cells, dU containing micronuclei and cytoplasmic DNA are increased in knockout cells. Surprisingly, DNA fragments containing dU block STING-dependent induction of IFN-1, MHC-1, and PD-L1. Furthermore, UNG knockout sensitizes cells to IFN-γ in vitro , and potentiates responses to anti-PD-L1 in resistant tumors in vivo . These data demonstrate an unexpected and specific role for dU-rich DNA in suppressing STING-dependent IFN-1 responses, and show that UNG-deficient tumors have a heightened response to immune checkpoint inhibitors. STATEMENT OF SIGNIFICANCE: Antimetabolites disrupt nucleotide pools and increase dU incorporation by DNA polymerases. We show that unrepaired dU potentiates responses to checkpoint inhibitors in mouse models of cancer. Patients with low tumor UNG may respond to antimetabolites combined with checkpoint inhibitors, and patients with high tumor UNG may respond to UNG inhibitors combined with checkpoint inhibitors.

7.
J Orthop Surg Res ; 19(1): 309, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783358

RESUMO

BACKGROUND: Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS: MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS: Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS: Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.


Assuntos
Abietanos , Apoptose , Consolidação da Fratura , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Ovariectomia , Animais , Abietanos/administração & dosagem , Abietanos/farmacologia , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Camundongos , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Osteogênese/efeitos dos fármacos , Fraturas por Osteoporose/prevenção & controle
8.
Ecotoxicol Environ Saf ; 277: 116392, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677065

RESUMO

Smoking disrupts bone homeostasis and serves as an independent risk factor for the development and progression of osteoporosis. Tobacco toxins inhibit the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), promote BMSCs aging and exhaustion, but the specific mechanisms are not yet fully understood. Herein, we successfully established a smoking-related osteoporosis (SROP) model in rats and mice through intraperitoneal injection of cigarette smoke extract (CSE), which significantly reduced bone density and induced aging and inhibited osteogenic differentiation of BMSCs both in vivo and in vitro. Bioinformatics analysis and in vitro experiments confirmed that CSE disrupts mitochondrial homeostasis through oxidative stress and inhibition of mitophagy. Furthermore, we discovered that CSE induced BMSCs aging by upregulating phosphorylated AKT, which in turn inhibited the expression of FOXO3a and the Pink1/Parkin pathway, leading to the suppression of mitophagy and the accumulation of damaged mitochondria. MitoQ, a mitochondrial-targeted antioxidant and mitophagy agonist, was effective in reducing CSE-induced mitochondrial oxidative stress, promoting mitophagy, significantly downregulating the expression of aging markers in BMSCs, restoring osteogenic differentiation, and alleviating bone loss and autophagy levels in CSE-exposed mice. In summary, our results suggest that BMSCs aging caused by the inhibition of mitophagy through the AKT/FOXO3a/Pink1/Parkin axis is a key mechanism in smoking-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Mitofagia , Osteoporose , Animais , Mitofagia/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Osteoporose/induzido quimicamente , Osteoporose/patologia , Nicotiana/efeitos adversos , Proteína Forkhead Box O3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fumaça/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/metabolismo , Camundongos Endogâmicos C57BL , Células da Medula Óssea/efeitos dos fármacos
9.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339228

RESUMO

Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.

10.
Nat Commun ; 15(1): 1638, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388538

RESUMO

Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.


Assuntos
Bacteriófagos , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doença de Crohn/patologia , Viroma , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Íleo/patologia , Bactérias , Inflamação/patologia
11.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193119

RESUMO

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

12.
Gene ; 894: 147979, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37952749

RESUMO

Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Proliferação de Células/genética
13.
Life Sci ; 336: 122347, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103728

RESUMO

AIMS: The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS: In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS: BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE: This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.


Assuntos
Berberina , Epilepsia , Camundongos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica/métodos , Pentilenotetrazol/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
14.
Sci Total Environ ; 912: 169447, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141987

RESUMO

Wetlands serve many functions, including conserving water, providing habitats for animals and plants, and regulating climate change. Their unique ecological effects on the natural environment are indispensable in the whole ecosystem. Dianchi Lake Basin is located in Yunnan-Guizhou Plateau, China, and mainly in Kunming. It is a typical plateau urban wetland area. Based on spatio-temporal hotspot mining, spatio-temporal geographically weighted regression, and adaptive multidimensional grey prediction, we conducted correlation analyses of the wetland changes in Dianchi Lake Basin from 1993 to 2020 under the influence of human activities and natural conditions. The results show that (1) the active wetland change zone in Dianchi Lake Basin is mainly located around Dianchi Lake, and (2) the wetlands in some areas on the north and south of Dianchi Lake declined in the early 21st century, but under the protection policy in recent years, the wetlands in these areas gradually recovered. Meanwhile, the wetlands in most areas around Dianchi Lake showed a significant growth trend from 2018 to 2020. The results suggest that the wetland change in Dianchi Lake Basin is mainly related to the urbanization of Kunming, and it can be divided into five regions (strong negative correlation, weak negative correlation, weak correlation, weak positive correlation, and strong positive correlation) according to the different correlation of human activity intensity, among which the main factors affected by nature are different, but they are all related to temperature. This study shows that, although wetlands in plateau cities can be properly restored under proper protection, wetland protection should be kept in step with the development of plateau cities to support sustainable urban development and carbon neutrality.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Lagos , Monitoramento Ambiental/métodos , China
15.
ACS Omega ; 8(46): 43586-43595, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027361

RESUMO

Mesothelin (MSLN) is a tumor-associated antigen found in a variety of cancers and is a target for imaging and therapeutic applications in MSLN-expressing tumors. We have developed high affinity anti-MSLN human VH domain antibodies, providing alternative targeting vectors to conventional IgG antibodies that are associated with long-circulating half-lives and poor penetration of tumors, limiting antitumor activity in clinical trials. Based on two newly identified anti-MSLN VH binders (3C9, 2A10), we generated VH-Fc fusion proteins and modified them for zirconium-89 radiolabeling to create anti-MSLN VH-Fc PET tracers. The focus of this study was to assess the ability of PET-imaging to compare the in vivo performance of anti-MSLN VH-Fc fusion proteins (2A10, 3C9) targeting different epitopes of MSLN vs IgG1 (m912; a clinical benchmark antibody with an overlapped epitope as 2A10) for PET imaging in a mouse model of colorectal cancer (CRC). The anti-MSLN VH-Fc fusion proteins were successfully modified and radiolabeled with zirconium-89. The resulting MSLN-targeted PET-imaging agents demonstrated specific uptake in the MSLN-expressing HCT116 tumors. The in vivo performance of the MSLN-targeted PET-imaging agents utilizing VH-Fc showed more rapid and greater accumulation and deeper penetration within the tumor than the full-length IgG1 m912-based PET-imaging agent. Furthermore, PET imaging allowed us to compare the pharmacokinetics of epitope-specific VH domain-based PET tracers. Overall, these data are encouraging for the incorporation of PET imaging to assess modified VH domain structures to develop novel anti-MSLN VH domain-based therapeutics in MSLN-positive cancers as well as their companion PET imaging agents.

16.
J Adv Res ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995945

RESUMO

INTRODUCTION: One-third of people with epilepsy continue to experience seizures despite treatment with existing anti-seizure medications (ASMs). The failure of modern ASMs to substantially improve epilepsy prognosis has been partly attributed to overreliance on acute rodent models in preclinical drug development as they do not adequately recapitulate the mechanisms of human epilepsy, are labor-intensive and unsuitable for high-throughput screening (HTS). There is an urgent need to find human-relevant HTS models in preclinical drug development to identify novel anti-seizure compounds. OBJECTIVES: This paper developed high-throughput preclinical screening models to identify new ASMs. METHODS: 14 natural compounds (α-asarone, curcumin, vinpocetine, magnolol, ligustrazine, osthole, tanshinone IIA, piperine, gastrodin, quercetin, berberine, chrysin, schizandrin A and resveratrol) were assessed for their ability to suppress epileptiform activity as measured by multi-electrode arrays (MEA) in neural cultures derived from human induced pluripotent stem cells (iPSCs). In parallel, they were tested for anti-seizure effects in zebrafish and mouse models, which have been widely used in development of modern ASMs. The effects of the compounds in these models were compared. Two approved ASMs were used as positive controls. RESULTS: Epileptiform activity could be induced in iPSCs-derived neurons following treatment with 4-aminopyridine (4-AP) and inhibited by standard ASMs, carbamazepine, and phenytoin. Eight of the 14 natural compounds significantly inhibited the epileptiform activity in iPSCs-derived neurons. Among them, piperine, magnolol, α-asarone, and osthole showed significant anti-seizure effects both in zebrafish and mice. Comparative analysis showed that compounds ineffective in the iPSCs-derived neural model also showed no anti-seizure effects in the zebrafish or mouse models. CONCLUSION: Our findings support the use of iPSCs-derived human neurons for first-line high-throughput screening to identify compounds with anti-seizure properties and exclude ineffective compounds. Effective compounds may then be selected for animal evaluation before clinical testing. This integrated approach may improve the efficiency of developing novel ASMs.

17.
Mater Today Bio ; 23: 100831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37881448

RESUMO

Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.

18.
Calcif Tissue Int ; 113(5): 558-570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747519

RESUMO

Monotropein is one of the active ingredients in Morinda Officinalis, which has been used for the treatment in multiple bone and joint diseases. This study aimed to observe the in vitro effects of Monotropein on osteogenic differentiation of lipopolysaccharide treated bone marrow mesenchymal stem cells (bMSCs), and the in vivo effects of local application of Monotropein on bone fracture healing in ovariectomized mice. Lipopolysaccharide was used to set up the inflammatory model in bMSCs, which were treated by Monotropein. Molecular docking analysis was performed to evaluate the potential interaction between Monotropein and p65. Transverse fractures of middle tibias were established in ovariectomized mice, and Monotropein was locally applied to the fracture site using injectable hydrogel. Monotropein enhanced the ability of primary bMSCs in chondro-osteogenic differentiation. Furthermore, Monotropein rescued lipopolysaccharide-induced osteogenic differentiation impairment and inhibited lipopolysaccharide-induced p65 phosphorylation in primary bMSCs. Docking analysis showed that the binding activity of Monotropein and p65/14-3-3 complex is stronger than the selective inhibitor of NF-κB (p65), DP-005. Local application of Monotropein partially rescued the decreased bone mass and biomechanical properties of callus or healed tibias in ovariectomized mice. The expressions of Runx2, Osterix and Collagen I in the 2-week callus were partially restored in Monotropein-treated ovariectomized mice. Taking together, local application of Monotropein promoted fracture healing in ovariectomized mice. Inhibition of p65 phosphorylation and enhancement in osteogenesis of mesenchymal stem cells could be partial of the effective mechanisms.


Assuntos
Consolidação da Fratura , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular , Diferenciação Celular , Células Cultivadas , Células da Medula Óssea
19.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763883

RESUMO

Liquid phase exfoliation (LPE) has emerged as a promising method for the industrial-scale production of graphene. However, one of its critical steps, namely sonication, has faced challenges due to high power consumption and low efficiency, leading to limited applicability in industrial settings. This study introduces a novel, cost-effective microfluidic sonication device designed to significantly reduce power consumption while efficiently assisting the LPE process for graphene production. By coupling a capillary with a buzzer and applying an appropriate electric signal, simulation and particle tracing experiments reveal the generation of robust shear forces resulting from acoustic streaming and cavitation when the capillary end is immersed in the liquid. For the first time, the capillary-based sonication device was effectively utilized for graphene exfoliation in a DMF (N,N-Dimethylformamide) + NaOH liquid phase system. The SEM (Scanning Electron Microscope) and Raman characterization results corroborate the successful exfoliation of 100 nm with thicknesses below 10 nm graphene sheets from graphite flakes using this pioneering device. The values of I2D/IG increase after processing, which suggests the exfoliation of graphite flakes into thinner graphene sheets. The vibration-based acoustofluidic effector represents a versatile and scalable miniature device, capable of being employed individually for small-batch production, thereby optimizing the utilization of raw 2D materials, particularly in experimental scenarios. Alternatively, it holds the potential for large-scale manufacturing through extensive parallelization, offering distinct advantages in terms of cost-efficiency and minimal power consumption.

20.
J Med Virol ; 95(9): e29083, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698033

RESUMO

The human gut microbiome varies substantially across individuals and populations and differentially tames our immunity at steady-state. Hence, we hypothesize that the large heterogeneity of gut microbiomes at steady-state may shape our baseline immunity differentially, and then mediate discrepant immune responses and symptoms when one encounters a viral infection, such as SARS-CoV-2 infection. To validate this hypothesis, we conducted an exploratory, longitudinal microbiome-COVID-19 study involving homogenous young participants from two geographically different regions in China. Subjects were recruited and sampled of fecal specimens before the 3-week surge window of COVID-19 (between December 11 and December 31, 2022) in China, and then were followed up for assessment of COVID-19 and post-COVID-19 manifestations. Our data showed that the baseline gut microbiome composition was intricately associated with different COVID-19 manifestations, particularly gastrointestinal involvement and post-COVID-19 lingering symptoms, in both an individual- and population-dependent manner. Our study intriguingly for the first time highlight that the gut microbiome at steady-state may prepare us differentially for weathering a respiratory viral infection.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , SARS-CoV-2 , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA