Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288573

RESUMO

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fibrilinas/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Fibrilina-1/metabolismo , Ruptura Aórtica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Oxirredução , Modelos Animais de Doenças , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapêutico
2.
Medicine (Baltimore) ; 99(50): e23342, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33327259

RESUMO

To screen and identify ideal leading compounds from a drug library (ZINC15 database) with potential inhibition effect against c-Myc to contribute to medication design and development.A series of computer-aided virtual screening techniques were performed to identify potential inhibitors of c-Myc. LibDock from the software Discovery Studio was used to do a structure-based screening after ADME (absorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was utilized to show the binding affinity and potential mechanism between ligands and c-Myc. Stability of the ligand-receptor complex was analyzed by molecular dynamic simulation at the end of the research.Compounds with more interactive energy which are confirmed to be the potential inhibitors for c-Myc were identified from the ZINC15 databases. Additionally, those compounds are also anticipated with fewer ames mutagenicity, rodent carcinogenicity, nondevelopmental toxic potential, and tolerant with cytochrome p450 2D6(CYP2D6). Dynamic simulation analysis also revealed that the very compounds had more favorable potential energy compared with 10058-F4(ZINC12406714). Furthermore, we prove that those compounds are stable and can exist in natural conditions.This study demonstrates that the compounds are potential therapeutic inhibitors for c-Myc. These compounds are safe and stable for drug candidates and may play a critical role in c-Myc inhibitor development.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
Cancer Res ; 79(19): 4923-4936, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331910

RESUMO

DIS3-like 3'-5' exoribonuclease 2 (DIS3L2) degrades aberrant RNAs, however, its function in tumorigenesis remains largely unexplored. Here, aberrant DIS3L2 expression promoted human hepatocellular carcinoma (HCC) progression via heterogeneous nuclear ribonucleoproteins (hnRNP) U-mediated alternative splicing. DIS3L2 directly interacted with hnRNP U through its cold-shock domains and promoted inclusion of exon 3b during splicing of pre-Rac1 independent of its exonuclease activity, yielding an oncogenic splicing variant, Rac1b, which is known to stimulate cellular transformation and tumorigenesis. DIS3L2 regulated alternative splicing by recruiting hnRNP U to pre-Rac1. Rac1b was critical for DIS3L2 promotion of liver cancer development both in vitro and in vivo. Importantly, DIS3L2 and Rac1b expression highly correlated with HCC progression and patient survival. Taken together, our findings uncover an oncogenic role of DIS3L2, in which it promotes liver cancer progression through a previously unappreciated mechanism of regulating hnRNP U-mediated alterative splicing. SIGNIFICANCE: These findings establish the role and mechanism of the 3'-5' exoribonuclease DIS3L2 in hepatocellular carcinoma carcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Exorribonucleases/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Neoplasias Hepáticas/patologia , Processamento Alternativo/genética , Animais , Carcinoma Hepatocelular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA