Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454129

RESUMO

Physiological low oxygen (O2) concentration (<5%) favors erythroid development ex vivo. It is known that low O2 concentration, via the stabilization of hypoxia-induced transcription factors (HIFs), intervenes with Notch signaling in the control of cell fate. In addition, Notch activation is implicated in the regulation of erythroid differentiation. We test here if the favorable effects of a physiological O2 concentration (3%) on the amplification of erythroid progenitors implies a cooperation between HIFs and the Notch pathway. To this end, we utilized a model of early erythropoiesis ex vivo generated from cord blood CD34+ cells transduced with shHIF1α and shHIF2α at 3% O2 and 20% O2 in the presence or absence of the Notch pathway inhibitor. We observed that Notch signalization was activated by Notch2R−Jagged1 ligand interaction among progenitors. The inhibition of the Notch pathway provoked a modest reduction in erythroid cell expansion and promoted erythroid differentiation. ShHIF1α and particularly shHIF2α strongly impaired erythroid progenitors' amplification and differentiation. Additionally, HIF/NOTCH signaling intersects at the level of multipotent progenitor erythroid commitment and amplification of BFU-E. In that, both HIFs contribute to the expression of Notch2R and Notch target gene HES1. Our study shows that HIF, particularly HIF2, has a determining role in the early erythroid development program, which includes Notch signaling.


Assuntos
Células Precursoras Eritroides , Eritropoese , Diferenciação Celular , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Sangue Fetal , Oxigênio/metabolismo
2.
Biomolecules ; 12(3)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327623

RESUMO

Steady state peripheral blood (SSPB) contains hematopoietic stem and progenitor cells (HSPCs) presenting characteristics of real hematopoietic stem cells, and thus represents an interesting alternative cell supply for hematopoietic cell transplantation. Development of ex vivo expansion strategies could overcome the low HSPC numbers usually rescued from SSPB. We investigated the effect of alpha lipoic acid (ALA) on ex vivo culture of SSPB CD34 positive (CD34pos) cells on primitive cell expansion, cell cycle, and oxidative metabolism as estimated by determining the ROS and GSH content. ALA increased the ex vivo expansion of total CD34pos cells and of phenotypically defined CD34pos HSPCs subpopulations that retained in vivo repopulating capacity, concomitantly to a decreased expansion of differentiating cells. ALA did not modify cell cycle progression nor the proliferation of ex vivo expanded CD34pos cells, and coherently did not affect the ROS level. On the contrary, ALA decreased the proliferation and disturbed cell cycle progression of cells reaching a differentiated status, a phenomenon that seems to be associated with a drop in ROS level. Nonetheless, ALA affected the redox status of hematopoietic primitive cells, as it reproducibly increased GSH content. In conclusion, ALA represents an interesting molecule for the improvement of ex vivo expansion strategies and further clinical application in hematopoietic cell transplantation (HCT).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Ácido Tióctico , Antígenos CD34/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia
3.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053612

RESUMO

Targeting FLT3-ITD in AML using TKI against FLT3 cannot prevent relapse even in the presence of complete remission, suggesting the resistance and/or the persistence of leukemic-initiating cells in the hematopoietic niche. By mimicking the hematopoietic niche condition with cultures at low oxygen concentrations, we demonstrate in vitro that FLT3-ITD AML cells decrease their repopulating capacity when Vps34 is inhibited. Ex vivo, AML FLT3-ITD blasts treated with Vps34 inhibitors recovered proliferation more slowly due to an increase an apoptosis. In vivo, mice engrafted with FLT3-ITD AML MV4-11 cells have the invasion of the bone marrow and blood in 2 weeks. After 4 weeks of FLT3 TKI treatment with gilteritinib, the leukemic burden had strongly decreased and deep remission was observed. When treatment was discontinued, mice relapsed rapidly. In contrast, Vps34 inhibition strongly decreased the relapse rate, and even more so in association with mobilization by G-CSF and AMD3100. These results demonstrate that remission offers the therapeutic window for a regimen using Vps34 inhibition combined with mobilization to target persistent leukemic stem cells and thus decrease the relapse rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA