Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(31): e202404823, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38728623

RESUMO

The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.

2.
Chemistry ; 30(33): e202400608, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604947

RESUMO

For a comparison of the interaction modes of various chalcogen-bond donors, 2-chalcogeno-imidazolium salts have been designed, synthesized, and studied by single crystal X-ray diffraction, solution NMR and DFT as well as for their ability to act as activators in an SN1-type substitution reaction. Their interaction modes in solution were elucidated based on NMR diffusion and chemical shift perturbation experiments, which were supported by DFT-calculations. Our finding is that going from lighter to the heavier chalcogens, hydrogen bonding plays a less, while chalcogen bonding an increasingly important role for the coordination of anions. Anion-π interactions also show importance, especially for the sulfur and selenium derivatives.

3.
4.
Acta Crystallogr C Struct Chem ; 79(Pt 2): 26-35, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739607

RESUMO

1,3-Bis(benzimidazoliumyl)benzene-based chalcogen-bonding catalysts were previously successfully applied in different benchmark reactions. In one of those examples, i.e. the activation of quinolines, sulfur- and selenium-based chalcogen-bonding catalysts showed comparable properties, which is unexpected, as the selenium-containing catalysts should show superior catalytic properties due to the increased polarizability of selenium compared to sulfur. Herein, we present four crystal structures of the respective 1,3-bis(benzimidazoliumyl)benzene-based chalcogen-bonding catalyst containing sulfur (3S) and selenium (3Se, three forms) as Lewis acidic centres. The sulfur-containing catalyst shows weaker chalcogen bonding compared to its selenium analogue, as well as anion-π interactions. The selenium-based analogues, on the other hand, show stronger chalcogen-bonding motifs compared to the sulfur equivalent, depending on the crystallization conditions, but in every case, the intermolecular interactions are comparable in strength. Other interactions, such as hydrogen bonding and anion-π, were also observed, but in the latter case, the interaction distances are longer compared to those of the sulfur-based equivalent. The solid-state structures could not further explain the high catalytic activity of the sulfur-containing catalysts. Therefore, a comparison of their σ-hole depths from density functional theory (DFT) gas-phase calculations was performed, which are again in line with the previously found properties in the solid-state structures.

5.
Chemistry ; 29(3): e202203149, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239437

RESUMO

Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).


Assuntos
Ligantes , Oxirredução
6.
Chemphyschem ; 24(1): e202200634, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36043491

RESUMO

Cyclic diaryliodonium compounds like iodolium derivatives have increasingly found use as noncovalent Lewis acids in the last years. They are more stable toward nucleophilic substitution than acyclic systems and are markedly more Lewis acidic. Herein, this higher Lewis acidity is analyzed and explained via quantum-chemical calculations and energy decomposition analyses. Its key origin is the change in energy levels and hybridization of iodine's orbitals, leading to both more favorable electrostatic interaction and better charge transfer. Both of the latter seem to contribute in similar fashion, while hydrogen bonding as well as steric repulsion with the phenyl rings play at best a minor role. In comparison to iodolium, bromolium and chlorolium are less Lewis acidic the lighter the halogen, which is predominantly based on less favorable charge-transfer interactions.


Assuntos
Halogênios , Ácidos de Lewis , Ácidos de Lewis/química , Modelos Moleculares , Halogênios/química , Íons , Termodinâmica
7.
Chemistry ; 28(47): e202200917, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35704037

RESUMO

Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.


Assuntos
Iminas , Selênio , Reação de Cicloadição , Selênio/química , Solventes , Telúrio/química
8.
J Org Chem ; 87(3): 1661-1668, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34181414

RESUMO

Recently, a tellurium-based chalcogen-bond-catalyzed nitro-Michael reaction was reported ( Angew. Chem. Int. Ed. 2019, 58, 16923), taking advantage of the strong Lewis acidity of the catalyst. This species was found to be more effective than an analogous iodine-based halogen bond organocatalyst. Herein, we present a detailed mechanistic and kinetic analysis of these catalytic cycles including the influence of the solvent (and the performance of different intrinsic solvation models). While the chalcogen bonding interaction is fundamental to activate the C-C bond formation, we found that the presence of a two-water molecular bridge is critical to allow the following, otherwise high-energy proton transfer step. Even though the iodine-based halogen bonding interaction is stronger than the tellurium-based chalcogen bonding one, which makes the former a stronger Lewis acid and hence in principle a more efficient catalyst, solvation effects explain the smaller energy span of the latter.

9.
ChemistryOpen ; 10(11): 1088, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34726843

RESUMO

Invited for this month's cover is the group of Viktoria H. Gessner at the Ruhr-University in Bochum (Germany). The cover shows the structure of the newly reported, isolated metallated ylide. Due to the high negative charge at the ylidic carbon center this compound is "on fire", but can be stabilized by smart molecular design. Structure analyses of the different alkali metal complexes combined with computational studies provide insights into the electronic structure of the compounds Read the full text of their Communication at 10.1002/open.202100178.

10.
ChemistryOpen ; 10(11): 1089-1094, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569718

RESUMO

α-Metallated ylides have revealed themselves to be versatile reagents for the introduction of ylide groups. Herein, we report the synthesis of the thiophosphinoyl and piperidyl (Pip) substituted α-metallated ylide [Ph2 (Pip)P=C-P(S)Ph2 ]M (M=Li, Na, K) through a four-step synthetic procedure starting from diphenylmethylphosphine sulfide. Metallation of the ylide intermediate was successfully accomplished with different alkali metal bases delivering the lithium, sodium and potassium salts, the latter isolable in high yields. Structure analyses of the lithium and potassium compounds in the solid state with and without crown ether revealed different aggregates (monomer, dimer and hexamer) with the metals coordinated by the thiophosphoryl moiety and ylidic carbon atom. Although the piperidyl group does not coordinate to the metal, it significantly contributes to the stability of the yldiide by charge delocalization through negative hyperconjugation.

11.
Chemistry ; 27(67): 16530-16542, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34409662

RESUMO

Halogen bonding occurs between molecules featuring Lewis acidic halogen substituents and Lewis bases. It is often rationalized as a predominantly electrostatic interaction and thus interactions between ions of like charge (e. g., of anionic halogen bond donors with halides) seem counter-intuitive. Herein, we provide an overview on such complexes. First, theoretical studies are described and their findings are compared. Next, experimental evidences are presented in the form of crystal structure database analyses, recent examples of strong "anti-electrostatic" halogen bonding in crystals, and the observation of such interactions also in solution. We then compare these complexes to select examples of "counter-intuitive" adducts formed by other interactions, like hydrogen bonding. Finally, we comment on key differences between charge-transfer and electrostatic polarization.

12.
Chem Sci ; 12(23): 8246-8251, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34194716

RESUMO

Halogen-bonded (XB) complexes between halide anions and a cyclopropenylium-based anionic XB donor were characterized in solution for the first time. Spontaneous formation of such complexes confirms that halogen bonding is sufficiently strong to overcome electrostatic repulsion between two anions. The formation constants of such "anti-electrostatic" associations are comparable to those formed by halides with neutral halogenated electrophiles. However, while the latter usually show charge-transfer absorption bands, the UV-Vis spectra of the anion-anion complexes examined herein are determined by the electronic excitations within the XB donor. The identification of XB anion-anion complexes substantially extends the range of the feasible XB systems, and it provides vital information for the discussion of the nature of this interaction.

13.
Chem Rec ; 21(8): 1912-1927, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34145711

RESUMO

Halogen bonding, the non-covalent interaction of Lewis bases with an electron-deficient region of halogen substituents, received increased attention recently. Consequently, the design and evaluation of numerous halogen-containing species as halogen bond donors have been subject to intense research. More recently, organoiodine compounds at the iodine(III) state have been receiving growing attention in the field. Due to their electronic and structural properties, they provide access to unique binding modes. For this reason, our groups have been involved in the development of such compounds, in the quantification of their halogen bonding strength (through the evaluation of their Lewis acidities), as well as in the evaluation of their activities as catalysts in several model reactions. This account will describe these contributions.

14.
Org Biomol Chem ; 19(4): 770-774, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33432958

RESUMO

A series of cationic monodentate and bidentate iodo(benz)imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a syn-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BArF4 salts, PF6 or OTf salts were either inactive or showed background reaction through Lewis base catalysis. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.

15.
Phys Chem Chem Phys ; 23(4): 3041-3049, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480927

RESUMO

The ONIOM scheme M052X/[Def2TZVP+Def2TZVPD.ECP(I)]:AM1 is shown to represent halogen bond (XB) geometries nearly as well as DFT while being more than two orders of magnitude faster in systems containing >40 atoms. This finding is shown to hold for 40 XB donors, which cover most known backbones, and for a range of neutral and anionic Lewis bases. Complexation free energies can be accurately computed using these geometries and a single-point energy calculation at the DFT level. This approach circumvents the unfavorable scaling of computing time associated with modeling large systems involving halogen bonding.

16.
Angew Chem Int Ed Engl ; 60(14): 7920-7926, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33438798

RESUMO

An enantioselective sulfimidation of 3-thiosubstituted 2-quinolones and 2-pyridones was achieved with a stoichiometric nitrene source (PhI=NNs) and a silver-based catalyst system. Key to the success of the reaction is the use of a chiral phenanthroline ligand with a hydrogen bonding site. The enantioselectivity does not depend on the size of the two substituents at the sulfur atom but only on the binding properties of the heterocyclic lactams. A total of 21 chiral sulfimides were obtained in high yields (44-99 %) and with significant enantiomeric excess (70-99 % ee). The sulfimidation proceeds with high site-selectivity and can also be employed for the kinetic resolution of chiral sulfoxides. Mechanistic evidence suggests the intermediacy of a heteroleptic silver complex, in which the silver atom is bound to one molecule of the chiral ligand and one molecule of an achiral 1,10-phenanthroline. Support for the suggested reaction course was obtained by ESI mass spectrometry, DFT calculations, and a Hammett analysis.

17.
Angew Chem Int Ed Engl ; 60(10): 5069-5073, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33215804

RESUMO

In contrast to iodine(I)-based halogen bond donors, iodine(III)-derived ones have only been used as Lewis acidic organocatalysts in a handful of examples, and in all cases they acted in a monodentate fashion. Herein, we report the first application of a bidentate bis(iodolium) salt as organocatalyst in a Michael and a nitro-Michael addition reaction as well as in a Diels-Alder reaction that had not been activated by noncovalent organocatalysts before. In all cases, the performance of this bidentate XB donor distinctly surpassed the one of arguably the currently strongest iodine(I)-based organocatalyst. Bidentate coordination to the substrate was corroborated by a structural analysis and by DFT calculations of the transition states. Overall, the catalytic activity of the bis(iodolium) system approaches that of strong Lewis acids like BF3 .

18.
Angew Chem Int Ed Engl ; 59(38): 16496-16500, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32472957

RESUMO

In recent years, the non-covalent interaction of halogen bonding (XB) has found increasing application in organocatalysis. However, reports of the activation of metal-ligand bonds by XB have so far been limited to a few reactions with elemental iodine or bromine. Herein, we present the activation of metal-halogen bonds by two classes of inert halogen bond donors and the use of the resulting activated complexes in homogenous gold catalysis. The only recently explored class of iodolium derivatives were shown to be effective activators in two test reactions and their activity could be modulated by blocking of the Lewis acidic sites. Bis(benzimidazolium)-based halogen bonding activators provided even more rapid conversion, while the non-iodinated reference compound showed little activity. The role of halogen bonding in the activation of metal-halogen bonds was further investigated by NMR experiments and DFT calculations, which support the mode of activation occurring via halogen bonding.

19.
J Am Chem Soc ; 142(19): 8633-8640, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32286829

RESUMO

"Hypervalent" iodine(III) derivatives have been established as powerful reagents in organic transformations, but so far only a handful of studies have addressed their potential use as halogen-bonding noncovalent Lewis acids. In contrast to "classical" halogen-bond donors based on iodine(I) compounds, iodine(III) salts feature two directional electrophilic axes perpendicular to each other. Herein we present the first systematic investigation on biaxial binding to such Lewis acids in solution. To this end, hindered and unhindered iodolium species were titrated with various substrates, including diesters and diamides, via 1H NMR spectroscopy and isothermal titration calorimetry. Clear evidence for biaxial binding was obtained in two model systems, and the association strengths increased by 2 orders of magnitude. These findings were corroborated by density functional theory calculations (which reproduced the trend well but underestimated the absolute binding constants) and a cocrystal featuring biaxial coordination of a diamide to the unhindered iodolium compound.

20.
Angew Chem Int Ed Engl ; 59(27): 11150-11157, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227661

RESUMO

Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen-based Lewis acids) and anions seem counterintuitive. Such "anti-electrostatic" XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self-association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti-electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self-association of the anionic XB donors was observed in solid-state structures, resulting in dimers, trimers, and infinite chains. In addition, co-crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14-21 % shorter than the sum of the van der Waals radii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA