Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Respir Res ; 21(1): 132, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471489

RESUMO

BACKGROUND: Chronic tissue injury was shown to induce progressive scarring in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), while an array of repair/regeneration and stress responses come to equilibrium to determine the outcome of injury at the organ level. In the lung, type I alveolar epithelial (ATI) cells constitute the epithelial barrier, while type II alveolar epithelial (ATII) cells play a pivotal role in regenerating the injured distal lungs. It had been demonstrated that eukaryotic cells possess repair machinery that can quickly patch the damaged plasma membrane after injury, and our previous studies discovered the membrane-mending role of Tripartite motif containing 72 (TRIM72) that expresses in a limited number of tissues including the lung. Nevertheless, the role of alveolar epithelial cell (AEC) repair in the pathogenesis of IPF has not been examined yet. METHOD: In this study, we tested the specific roles of TRIM72 in the repair of ATII cells and the development of lung fibrosis. The role of membrane repair was accessed by saponin assay on isolated primary ATII cells and rat ATII cell line. The anti-fibrotic potential of TRIM72 was tested with bleomycin-treated transgenic mice. RESULTS: We showed that TRIM72 was upregulated following various injuries and in human IPF lungs. However, TRIM72 expression in ATII cells of the IPF lungs had aberrant subcellular localization. In vitro studies showed that TRIM72 repairs membrane injury of immortalized and primary ATIIs, leading to inhibition of stress-induced p53 activation and reduction in cell apoptosis. In vivo studies demonstrated that TRIM72 protects the integrity of the alveolar epithelial layer and reduces lung fibrosis. CONCLUSION: Our results suggest that TRIM72 protects injured lungs and ameliorates fibrosis through promoting post-injury repair of AECs.


Assuntos
Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Bleomicina/toxicidade , Feminino , Células HEK293 , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Recombinantes/biossíntese
2.
Sci Rep ; 9(1): 349, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674971

RESUMO

Lung cell injury and repair is a hallmark of the acute respiratory distress syndrome (ARDS). Lung protective mechanical ventilation strategies in these patients may lead to hypercapnia (HC). Although HC has been explored in the clinical context of ARDS, its effect upon alveolar epithelial cell (AEC) wounding and repair remains poorly understood. We have previously reported that HC alters the likelihood of AEC repair by a pH-sensitive but otherwise unknown mechanism. Adenylate cyclase (AC) is an attractive candidate as a putative AEC CO2 sensor and effector as it is bicarbonate sensitive and controls key mediators of AEC repair. The effect of HC on AC activity and plasma membrane (PM) wound repair was measured in AEC type 1 exposed to normocapnia (NC, 40 Torr) or HC (80 Torr), ± tromethamine (THAM) or sodium bicarbonate (HCO3) ± AC probes in a micropuncture model of AEC injury relevant to ARDS. Intracellular pH and AC activity were measured and correlated with repair. HC decreased intracellular pH 0.56, cAMP by 37%, and absolute PM repair rate by 26%. Buffering or pharmacologic manipulation of AC reduced or reversed the effects of HC on AC activity (THAM 103%, HCO3 113% of NC cAMP, ns; Forskolin 168%, p < 0.05) and PM repair (THAM 87%, HCO3 108% of NC likelihood to repair, ns; Forskolin 160%, p < 0.01). These findings suggest AC to be a putative AEC CO2 sensor and modulator of AEC repair, and may have implications for future pharmacologic targeting of downstream messengers of the AC-cAMP axis in experimental models of ARDS.


Assuntos
Adenilil Ciclases/metabolismo , Células Epiteliais Alveolares/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Hipercapnia/metabolismo , Regeneração , Animais , Biomarcadores , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Espaço Intracelular , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Modelos Biológicos , Ratos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Cicatrização
3.
Intensive Care Med ; 44(9): 1388-1399, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30051136

RESUMO

PURPOSE: The soluble receptor for advanced glycation end-products (sRAGE) is a marker of lung epithelial injury and alveolar fluid clearance (AFC), with promising values for assessing prognosis and lung injury severity in acute respiratory distress syndrome (ARDS). Because AFC is impaired in most patients with ARDS and is associated with higher mortality, we hypothesized that baseline plasma sRAGE would predict mortality, independently of two key mediators of ventilator-induced lung injury. METHODS: We conducted a meta-analysis of individual data from 746 patients enrolled in eight prospective randomized and observational studies in which plasma sRAGE was measured in ARDS articles published through March 2016. The primary outcome was 90-day mortality. Using multivariate and mediation analyses, we tested the association between baseline plasma sRAGE and mortality, independently of driving pressure and tidal volume. RESULTS: Higher baseline plasma sRAGE [odds ratio (OR) for each one-log increment, 1.18; 95% confidence interval (CI) 1.01-1.38; P = 0.04], driving pressure (OR for each one-point increment, 1.04; 95% CI 1.02-1.07; P = 0.002), and tidal volume (OR for each one-log increment, 1.98; 95% CI 1.07-3.64; P = 0.03) were independently associated with higher 90-day mortality in multivariate analysis. Baseline plasma sRAGE mediated a small fraction of the effect of higher ΔP on mortality but not that of higher VT. CONCLUSIONS: Higher baseline plasma sRAGE was associated with higher 90-day mortality in patients with ARDS, independently of driving pressure and tidal volume, thus reinforcing the likely contribution of alveolar epithelial injury as an important prognostic factor in ARDS. Registration: PROSPERO (ID: CRD42018100241).


Assuntos
Receptor para Produtos Finais de Glicação Avançada/metabolismo , Síndrome do Desconforto Respiratório/mortalidade , APACHE , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/sangue , Fatores de Risco , Volume de Ventilação Pulmonar/fisiologia , Trabalho Respiratório
4.
Am J Respir Cell Mol Biol ; 59(5): 635-647, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29958015

RESUMO

Studies showed that TRIM72 is essential for repair of alveolar cell membrane disruptions, and exogenous recombinant human TRIM72 protein (rhT72) demonstrated tissue-mending properties in animal models of tissue injury. Here we examine the mechanisms of rhT72-mediated lung cell protection in vitro and test the efficacy of inhaled rhT72 in reducing tissue pathology in a mouse model of ventilator-induced lung injury. In vitro lung cell injury was induced by glass beads and stretching. Ventilator-induced lung injury was modeled by injurious ventilation at 30 ml/kg tidal volume. Affinity-purified rhT72 or control proteins were added into culture medium or applied through nebulization. Cellular uptake and in vivo distribution of rhT72 were detected by imaging and immunostaining. Exogenous rhT72 maintains membrane integrity of alveolar epithelial cells subjected to glass bead injury in a dose-dependent manner. Inhaled rhT72 decreases the number of fatally injured alveolar cells, and ameliorates tissue-damaging indicators and cell injury markers after injurious ventilation. Using in vitro stretching assays, we reveal that rhT72 improves both cellular resilience to membrane wounding and membrane repair after injury. Image analysis detected rhT72 uptake by rat alveolar epithelial cells, which can be inhibited by a cholesterol-disrupting agent. In addition, inhaled rhT72 distributes to the distal lungs, where it colocalizes with phosphatidylserine detection on nonpermeabilized lung slices to label wounded cells. In conclusion, our study showed that inhaled rhT72 accumulates in injured lungs and protects lung tissue from ventilator injury, the mechanisms of which include improving cell resilience to membrane wounding, localizing to injured membrane, and augmenting membrane repair.


Assuntos
Proteínas de Transporte/administração & dosagem , Alvéolos Pulmonares/metabolismo , Proteínas Recombinantes/administração & dosagem , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Cicatrização , Administração por Inalação , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Proteínas de Membrana , Camundongos , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/patologia , Ratos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
5.
Respir Care ; 63(2): 219-226, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29367383

RESUMO

This review describes the current understanding of the lungs' response to deforming stress under conditions of both normal physiology and acute lung injury. Several limiting assumptions are needed to infer lung parenchymal stress and strain from airway pressure, volume, and flow data from mechanically ventilated patients with injured lungs. These assumptions include the effects of the chest wall on lung-surface pressure, its topographical distribution, and the effects of non-uniform tissue properties on local parenchymal stresses. In addition, there is a spectrum of biophysical lung injury mechanisms that involves normal as well as tangential alveolar wall stresses. To these are added important secondary effects on pulmonary vascular resistance and right heart function. Understanding both the assumptions of lung mechanics and the scope of injury mechanisms operating during ARDS is necessary to interpret the results of clinical trials that inform prevailing ventilator-management guidelines. The implications issuing from these 3 topics inform a safer approach to setting and adjusting the ventilator to minimize the risk of ventilator-induced lung injury. This is enumerated in a 5-step approach that can be used to guide ventilator management of unstable patients with severe lung injury.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia , Estresse Fisiológico/fisiologia , Ventiladores Mecânicos , Adulto , Calibragem , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Tecido Parenquimatoso/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/instrumentação , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
7.
J Magn Reson Imaging ; 46(2): 365-374, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28117930

RESUMO

PURPOSE: To investigate the use of magnetic resonance elastography (MRE) in the quantitative assessment of pulmonary fibrosis by comparing quantitative shear stiffness measurements of lung parenchyma in patients diagnosed with fibrotic interstitial lung disease (ILD) and healthy controls. MATERIALS AND METHODS: A 1.5T spin-echo, echo planar imaging MRE (SE-EPI MRE) pulse sequence was utilized to assess absolute lung shear stiffness in 15 patients with diagnosed ILD and in 11 healthy controls. Data were collected at residual volume (RV) and total lung capacity (TLC). Spirometry data were obtained immediately prior to scanning. To test for statistical significance between RV and TLC shear stiffness estimates a two-sample t-test was performed. To assess variability within individual subject shear stiffness estimates, the intraclass correlation coefficient (ICC) and Krippendorff's alpha were calculated. RESULTS: Patients with ILD exhibited an average (±1 standard deviation) shear stiffness of 2.74 (±0.896) kPa at TLC and 1.32 (±0.300) kPa at RV. The corresponding values for healthy individuals were 1.33 (±0.195) kPa and 0.849 (±0.250) kPa, respectively. The difference in shear stiffness between RV and TLC was statistically significant (P < 0.001). At TLC, the ICC and alpha values were 0.909 and 0.887, respectively. At RV, the ICC and alpha values were 0.852 and 0.862, respectively. CONCLUSION: In subjects with known fibrotic interstitial lung disease, parenchymal shear stiffness is increased when compared to normal controls at both RV and TLC, with TLC demonstrating the most significant difference. MRE-derived parenchymal shear stiffness is a promising new noninvasive imaging-based biomarker of interstitial lung disease. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:365-374.


Assuntos
Imagem Ecoplanar , Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Valor Preditivo dos Testes , Volume Residual , Resistência ao Cisalhamento , Espirometria , Tomografia Computadorizada por Raios X , Capacidade Pulmonar Total
8.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L371-L391, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062486

RESUMO

Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.


Assuntos
Membrana Celular/patologia , Pneumopatias/patologia , Cicatrização , Animais , Humanos , Lesão Pulmonar/patologia , Modelos Biológicos , Transdução de Sinais
9.
Am J Respir Crit Care Med ; 194(12): 1452-1457, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27606837

RESUMO

Recent studies applying the principles of respiratory mechanics to respiratory disease have used inconsistent and mutually exclusive definitions of the term "transpulmonary pressure." By the traditional definition, transpulmonary pressure is the pressure across the whole lung, including the intrapulmonary airways, (i.e., the pressure difference between the opening to the pulmonary airway and the pleural surface). However, more recently transpulmonary pressure has also been defined as the pressure across only the lung tissue (i.e., the pressure difference between the alveolar space and the pleural surface), traditionally known as the "elastic recoil pressure of the lung." Multiple definitions of the same term, and failure to recognize their underlying assumptions, have led to different interpretations of lung physiology and conclusions about appropriate therapy for patients. It is our view that many current controversies in the physiological interpretation of disease are caused by the lack of consistency in the definitions of these common physiological terms. In this article, we discuss the historical uses of these terms and recent misconceptions that may have resulted when these terms were confused. These misconceptions include assertions that normal pleural pressure must be negative (subatmospheric) and that a pressure in the pleural space may not be substantially positive when a subject is relaxed with an open airway. We urge specificity and uniformity when using physiological terms to define the physical state of the lungs, the chest wall, and the integrated respiratory system.


Assuntos
Pulmão/fisiopatologia , Mecânica Respiratória/fisiologia , Humanos , Pressão , Troca Gasosa Pulmonar
10.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L452-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637632

RESUMO

Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Endocitose/fisiologia , Células Endoteliais/metabolismo , Pulmão/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Pulmão/citologia , Proteínas de Membrana , Camundongos
11.
Crit Care Med ; 44(1): 91-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474111

RESUMO

OBJECTIVE: Global lung stress varies considerably with low tidal volume ventilation for acute respiratory distress syndrome. High stress despite low tidal volumes may worsen lung injury and increase risk of death. No widely available parameter exists to assess global lung stress. We aimed to determine whether the volume delivered during a recruitment maneuver (V(RM)) is inversely associated with lung stress and mortality in acute respiratory distress syndrome. DESIGN: Substudy of an acute respiratory distress syndrome clinical trial on esophageal pressure-guided positive end-expiratory pressure titration. SETTING: U.S. academic medical center. PATIENTS: Forty-two patients with acute respiratory distress syndrome in whom airflow, airway pressure, and esophageal pressure were recorded during the recruitment maneuver. INTERVENTIONS: A single recruitment maneuver was performed before initiating protocol-directed ventilator management. Recruitment maneuvers consisted of a 30-second breath hold at 40 cm H2O airway pressure under heavy sedation or paralysis. V(RM) was calculated by integrating the flow-time waveform during the maneuver. End-inspiratory stress was defined as the transpulmonary (airway minus esophageal) pressure during end-inspiratory pause of a tidal breath and tidal stress as the transpulmonary pressure difference between end-inspiratory and end-expiratory pauses. MEASUREMENTS AND MAIN RESULTS: V(RM) ranged between 7.4 and 34.7 mL/kg predicted body weight. Lower V(RM) predicted high end-inspiratory and tidal lung stress (end-inspiratory: ß = -0.449; 95% CI, -0.664 to -0.234; p < 0.001; tidal: ß = -0.267; 95% CI, -0.423 to -0.111; p = 0.001). After adjusting for PaO2/FIO2 and either driving pressure, tidal volume, or plateau pressure and positive end-expiratory pressure, V(RM) remained independently associated with both end-inspiratory and tidal stress. In unadjusted analysis, low V(RM) predicted increased risk of death (odds ratio, 0.85; 95% CI, 0.72-1.00; p = 0.026). V(RM) remained significantly associated with mortality after adjusting for study arm (odds ratio, 0.84; 95% CI, 0.71-1.00; p = 0.022). CONCLUSIONS: Low V(RM) independently predicts high lung stress and may predict risk of death in patients with acute respiratory distress syndrome.


Assuntos
Pulmão/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Volume de Ventilação Pulmonar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva , Valor Preditivo dos Testes , Estresse Fisiológico
13.
Transfusion ; 55(8): 1838-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25702590

RESUMO

BACKGROUND: Pulmonary transfusion reactions are important complications of blood transfusion, yet differentiating these clinical syndromes is diagnostically challenging. We hypothesized that biologic markers of inflammation could be used in conjunction with clinical predictors to distinguish transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), and possible TRALI. STUDY DESIGN AND METHODS: In a nested case-control study performed at the University of California at San Francisco and Mayo Clinic, Rochester, we evaluated clinical data and blood samples drawn before and after transfusion in patients with TRALI (n = 70), possible TRALI (n = 48), TACO (n = 29), and controls (n = 147). Cytokines measured included granulocyte-macrophage-colony-stimulating factor, interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-α. Logistic regression and receiver operating characteristics curve analyses were used to determine the accuracy of clinical predictors and laboratory markers in differentiating TACO, TRALI, and possible TRALI. RESULTS: Before and after transfusion, IL-6 and IL-8 were elevated in patients with TRALI and possible TRALI relative to controls, and IL-10 was elevated in patients with TACO and possible TRALI relative to that of TRALI and controls. For all pulmonary transfusion reactions, the combination of clinical variables and cytokine measurements displayed optimal diagnostic performance, and the model comparing TACO and TRALI correctly classified 92% of cases relative to expert panel diagnoses. CONCLUSIONS: Before transfusion, there is evidence of systemic inflammation in patients who develop TRALI and possible TRALI but not TACO. A predictive model incorporating readily available clinical and cytokine data effectively differentiated transfusion-related respiratory complications such as TRALI and TACO.


Assuntos
Lesão Pulmonar Aguda/sangue , Volume Sanguíneo , Citocinas/sangue , Reação Transfusional/sangue , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Estudos de Casos e Controles , Alarmes Clínicos , Feminino , Humanos , Pressão Hidrostática , Hipóxia/sangue , Hipóxia/etiologia , Inflamação/sangue , Inflamação/etiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Edema Pulmonar/sangue , Edema Pulmonar/classificação , Edema Pulmonar/diagnóstico , Edema Pulmonar/etiologia , Curva ROC , Fatores de Risco , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico
14.
J Crit Care ; 30(1): 219.e1-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25261280

RESUMO

PURPOSE: To evaluate the predictive value of 6 different biomarkers in the development of multiple-organ failure (MOF) and mortality in a contemporary prospective cohort of acute respiratory distress syndrome (ARDS). METHODS: Patients with ARDS admitted to a tertiary referral center during an 8-month period were included. Plasma sample collection of 6 different biomarkers on days 1, 3, and 5 after ARDS onset was performed (von Willebrand factor, thrombin-antithrombin III complex, plasminogen activator inhibitor 1, interleukin 8, receptor for advanced glycation end-products, and club cell secretory protein). Main outcomes included hospital mortality and development of MOF. Logistic regression models for MOF and mortality prediction were created including biomarkers levels and clinical predictors. RESULTS: One hundred patients were included in the study. Do-not-resuscitate status and McCabe score were independently associated with increased mortality. None of the 6 biomarkers measured at the time of ARDS diagnosis predicted hospital mortality. After adjustment for important clinical characteristics, elevated day-1 interleukin 8 levels were associated with the development of MOF. CONCLUSIONS: Addition of biomarkers did not improve mortality prediction in this cohort of ARDS. Association between elevated interleukin 8 levels and progression of organ failures suggests an important role of exaggerated inflammatory response in the development of MOF.


Assuntos
Biomarcadores/sangue , Mortalidade Hospitalar , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/mortalidade , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , APACHE , Idoso , Antitrombina III , Feminino , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Peptídeo Hidrolases/sangue , Inibidores de Fosfolipase A2/sangue , Inibidor 1 de Ativador de Plasminogênio/sangue , Estudos Prospectivos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/sangue , Ordens quanto à Conduta (Ética Médica) , Uteroglobina/sangue , Fator de von Willebrand/análise
15.
Transfusion ; 55(5): 947-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25488517

RESUMO

BACKGROUND: Possible transfusion-related acute lung injury (pTRALI) cases by definition have a clear temporal relationship to an alternative recipient risk factor for acute respiratory distress syndrome (ARDS). We questioned whether transfusion factors are important for the development of pTRALI. STUDY DESIGN AND METHODS: In this nested case-control study, we prospectively identified 145 consecutive patients with pTRALI and randomly selected 163 transfused controls over a 4-year period at the University of California at San Francisco and the Mayo Clinic (Rochester, Minnesota). RESULTS: For pTRALI, we found evidence against transfusion being important: receipt of plasma from female donors (odds ratio [OR], 0.82; 95% confidence interval [CI], 0.29-2.3; p = 0.70), total number of units transfused (OR, 0.99; 95% CI, 0.89-1.10; p = 0.86), and number of red blood cell and whole blood units transfused (OR, 0.78; 95% CI, 0.59-1.03; p = 0.079). In contrast, we found that risk for pTRALI was associated with additional recipient factors: chronic alcohol abuse (OR, 12.5; 95% CI, 2.8-55; p < 0.001), current smoker (OR, 4.2; 95% CI, 1.67-10.8; p = 0.0024), shock before transfusion (OR, 4.6; 95% CI, 2.0-10.7; p < 0.001), and positive fluid balance before transfusion (OR, 1.32/L; 95% CI, 1.20-1.44; p < 0.001). CONCLUSION: Recipient risk factors for ARDS rather than transfusion risk factors predominate in pTRALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Reação Transfusional , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
16.
Crit Care Med ; 43(3): 665-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25513786

RESUMO

OBJECTIVE: Robust markers of subclinical perioperative lung injury are lacking. Extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index are two promising early markers of lung edema. We aimed to evaluate whether extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index would identify patients at risk for clinically significant postoperative pulmonary edema, particularly resulting from the acute respiratory distress syndrome. DESIGN: Prospective cohort study. SETTING: Tertiary care academic medical center. PATIENTS: Adults undergoing high-risk cardiac or aortic vascular surgery (or both) with risk of acute respiratory distress syndrome. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index measurements were obtained intraoperatively and in the early postoperative period. We assessed the accuracy of peak extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index as predictive markers of clinically significant pulmonary edema (defined as acute respiratory distress syndrome or cardiogenic pulmonary edema) using area under the receiver-operating characteristic curves. Associations between extravascular lung water indexed to predicted body weight and pulmonary vascular permeability patient-important with important outcomes were assessed. Of 150 eligible patients, 132 patients (88%) had extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index measurements. Of these, 13 patients (9.8%) had postoperative acute respiratory distress syndrome and 15 patients (11.4%) had cardiogenic pulmonary edema. Extravascular lung water indexed to predicted body weight effectively predicted development of clinically significant pulmonary edema (area under the receiver-operating characteristic curve, 0.79; 95% CI, 0.70-0.89). Pulmonary vascular permeability index discriminated acute respiratory distress syndrome from cardiogenic pulmonary edema alone or no edema (area under the receiver-operating characteristic curve, 0.77; 95% CI, 0.62-0.93). Extravascular lung water indexed to predicted body weight was associated with the worst postoperative PaO2/FIO2, duration of mechanical ventilation, ICU stay, and hospital stay. Peak values for extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index were obtained within 2 hours of the primary intraoperative insult for the majority of patients (> 80%). CONCLUSIONS: Perioperative extravascular lung water indexed to predicted body weight is an early marker that predicts risk of clinically significant postoperative pulmonary edema in at-risk surgical patients. Pulmonary vascular permeability index effectively discriminated postoperative acute respiratory distress syndrome from cardiogenic pulmonary edema. These measures will aid in the early detection of subclinical lung injury in at-risk surgical populations.


Assuntos
Permeabilidade Capilar/fisiologia , Água Extravascular Pulmonar/metabolismo , Período Perioperatório , Edema Pulmonar/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Centros Médicos Acadêmicos , Lesão Pulmonar Aguda/fisiopatologia , Biomarcadores , Peso Corporal , Humanos , Tempo de Internação , Pulmão/irrigação sanguínea , Prognóstico , Estudos Prospectivos , Curva ROC , Respiração Artificial/métodos
17.
Respir Care ; 59(8): 1302-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25233518

RESUMO

In the following perspective, we will highlight seemingly remote, downstream consequences of common ventilator management decisions. For example, a change in PEEP may alter venous return, blood pressure, cardiac output, arterial and venous blood gas tensions, metabolic rate, respiratory sensations, breathing pattern, and the work of breathing. If providers consider any of these changes dangerous or maladaptive, they may initiate additional interventions in the form of vasoactive agents, intravenous fluids, and/or sedatives, all of which have their own risk/benefit profile. The approach to such co-interventions is rarely addressed even in well-designed large clinical trials. Therefore, it is often impossible to infer intervention-specific mechanisms of action and/or identify the phenotype of responders and nonresponders in such trials. On the flip side, in preclinical research intended to uncover mechanisms, experimental animals are rarely treated the way a critically ill patient would be. For respiratory therapists, this knowledge gap stresses the imperative to think beyond the lungs and to communicate ventilator management decisions with all members of the healthcare team.


Assuntos
Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Humanos , Medição de Risco , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
18.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L449-59, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25106429

RESUMO

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Epiteliais , Alvéolos Pulmonares , Cicatrização , Animais , Proteínas de Transporte/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA