Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989443

RESUMO

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Assuntos
Biologia Computacional , Biologia Sintética , Linguagens de Programação , Software
2.
PeerJ Comput Sci ; 8: e1023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092012

RESUMO

Scientific software registries and repositories improve software findability and research transparency, provide information for software citations, and foster preservation of computational methods in a wide range of disciplines. Registries and repositories play a critical role by supporting research reproducibility and replicability, but developing them takes effort and few guidelines are available to help prospective creators of these resources. To address this need, the FORCE11 Software Citation Implementation Working Group convened a Task Force to distill the experiences of the managers of existing resources in setting expectations for all stakeholders. In this article, we describe the resultant best practices which include defining the scope, policies, and rules that govern individual registries and repositories, along with the background, examples, and collaborative work that went into their development. We believe that establishing specific policies such as those presented here will help other scientific software registries and repositories better serve their users and their disciplines.

3.
J Integr Bioinform ; 18(3)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34674411

RESUMO

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.


Assuntos
Biologia Computacional , Biologia Sintética , Simulação por Computador , Metadados , Linguagens de Programação , Software
4.
J Integr Bioinform ; 17(2-3)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32750035

RESUMO

Biological models often contain elements that have inexact numerical values, since they are based on values that are stochastic in nature or data that contains uncertainty. The Systems Biology Markup Language (SBML) Level 3 Core specification does not include an explicit mechanism to include inexact or stochastic values in a model, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactic constructs. The SBML Distributions package for SBML Level 3 adds the necessary features to allow models to encode information about the distribution and uncertainty of values underlying a quantity.


Assuntos
Linguagens de Programação , Biologia de Sistemas , Documentação , Idioma , Modelos Biológicos , Software
5.
J Integr Bioinform ; 17(2-3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32628633

RESUMO

Rule-based modeling is an approach that permits constructing reaction networks based on the specification of rules for molecular interactions and transformations. These rules can encompass details such as the interacting sub-molecular domains and the states and binding status of the involved components. Conceptually, fine-grained spatial information such as locations can also be provided. Through "wildcards" representing component states, entire families of molecule complexes sharing certain properties can be specified as patterns. This can significantly simplify the definition of models involving species with multiple components, multiple states, and multiple compartments. The systems biology markup language (SBML) Level 3 Multi Package Version 1 extends the SBML Level 3 Version 1 core with the "type" concept in the Species and Compartment classes. Therefore, reaction rules may contain species that can be patterns and exist in multiple locations. Multiple software tools such as Simmune and BioNetGen support this standard that thus also becomes a medium for exchanging rule-based models. This document provides the specification for Release 2 of Version 1 of the SBML Level 3 Multi package. No design changes have been made to the description of models between Release 1 and Release 2; changes are restricted to the correction of errata and the addition of clarifications.


Assuntos
Linguagens de Programação , Biologia de Sistemas , Documentação , Idioma , Modelos Biológicos , Software
6.
J Integr Bioinform ; 17(2-3)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32598315

RESUMO

This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.


Assuntos
Biologia Computacional , Biologia Sintética , Alemanha , Padrões de Referência , Software
7.
J Integr Bioinform ; 17(2-3)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32598316

RESUMO

This special issue of the Journal of Integrative Bioinformatics presents papers related to the 10th COMBINE meeting together with the annual update of COMBINE standards in systems and synthetic biology.


Assuntos
Biologia Computacional , Biologia Sintética , Padrões de Referência
8.
Nucleic Acids Res ; 48(D1): D407-D415, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701150

RESUMO

Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world's largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse.


Assuntos
Modelos Biológicos , Disciplinas das Ciências Biológicas , Conflito de Interesses , Linguagens de Programação , Software , Interface Usuário-Computador
9.
Methods Mol Biol ; 2049: 285-314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602618

RESUMO

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.


Assuntos
Gerenciamento de Dados/métodos , Biologia de Sistemas/métodos , Biologia Computacional , Bases de Dados Factuais
10.
J Integr Bioinform ; 16(2)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31301675

RESUMO

This special issue of the Journal of Integrative Bioinformatics presents an overview of COMBINE standards and their latest specifications. The standards cover representation formats for computational modeling in synthetic and systems biology and include BioPAX, CellML, NeuroML, SBML, SBGN, SBOL and SED-ML. The articles in this issue contain updated specifications of SBGN Process Description Level 1 Version 2, SBML Level 3 Core Version 2 Release 2, SBOL Version 2.3.0, and SBOL Visual Version 2.1.


Assuntos
Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Biologia Sintética , Biologia de Sistemas
11.
J Integr Bioinform ; 16(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31219795

RESUMO

Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Release 2 of Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. Release 2 corrects some errors and clarifies some ambiguities discovered in Release 1. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project website at http://sbml.org/.


Assuntos
Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Biologia de Sistemas
12.
Nat Protoc ; 14(3): 639-702, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787451

RESUMO

Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.


Assuntos
Modelos Biológicos , Software , Genoma , Redes e Vias Metabólicas , Biologia de Sistemas
13.
Brief Bioinform ; 20(2): 540-550, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30462164

RESUMO

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.


Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Factuais , Semântica , Humanos , Software
15.
J Integr Bioinform ; 15(1)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522418

RESUMO

Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML, their encoding in XML (the eXtensible Markup Language), validation rules that determine the validity of an SBML document, and examples of models in SBML form. The design of Version 2 differs from Version 1 principally in allowing new MathML constructs, making more child elements optional, and adding identifiers to all SBML elements instead of only selected elements. Other materials and software are available from the SBML project website at http://sbml.org/.


Assuntos
Documentação/normas , Armazenamento e Recuperação da Informação/normas , Modelos Biológicos , Linguagens de Programação , Software , Biologia de Sistemas/normas , Animais , Simulação por Computador , Guias como Assunto , Humanos , Transdução de Sinais
16.
J Integr Bioinform ; 15(1)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596055

RESUMO

Standards are essential to the advancement of Systems and Synthetic Biology. COMBINE provides a formal body and a centralised platform to help develop and disseminate relevant standards and related resources. The regular special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards by providing unified, easily citable access. This paper provides an overview of existing COMBINE standards and presents developments of the last year.


Assuntos
Biologia Computacional/normas , Documentação/normas , Biologia Sintética/normas , Biologia de Sistemas/normas , Animais , Humanos , Biologia Sintética/métodos , Biologia Sintética/organização & administração , Biologia de Sistemas/métodos , Biologia de Sistemas/organização & administração
17.
BMC Res Notes ; 10(1): 451, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877760

RESUMO

OBJECTIVE: The Systems Biology Markup Language (SBML) is a popular open format for storing and exchanging computational models in biology. The definition of SBML is captured in formal specification documents. SBMLPkgSpec is a LaTeX document style intended to fill the need for a standard format for writing such specification documents. RESULTS: Specification documents for SBML Level 3 extensions (known as packages in SBML) are made more uniform with the use of a standard template. SBMLPkgSpec is a LaTeX class that provides a document framework for SBML Level 3 package specifications, to simplify the work of document authors while improving the overall quality of the family of SBML specifications.


Assuntos
Documentação , Linguagens de Programação , Software , Biologia de Sistemas
18.
IEEE Trans Biomed Eng ; 63(10): 2007-14, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27305665

RESUMO

OBJECTIVE: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. METHODS: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. RESULTS: Our analysis revealed several challenges to representing WC models using the current standards. CONCLUSION: We, therefore, propose several new WC modeling standards, software, and databases. SIGNIFICANCE: We anticipate that these new standards and software will enable more comprehensive models.


Assuntos
Simulação por Computador , Modelos Biológicos , Software , Biologia de Sistemas/normas , Biologia Computacional , Técnicas Citológicas , Feminino , Humanos , Masculino , Biologia de Sistemas/educação , Biologia de Sistemas/organização & administração
19.
Bioinformatics ; 32(12): 1905-6, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26861819

RESUMO

UNLABELLED: MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging-especially for legacy models not written with translation in mind. We developed MOCCASIN (Model ODE Converter for Creating Automated SBML INteroperability) to help. MOCCASIN can convert ODE-based MATLAB models of biochemical reaction networks into the SBML format. AVAILABILITY AND IMPLEMENTATION: MOCCASIN is available under the terms of the LGPL 2.1 license (http://www.gnu.org/licenses/lgpl-2.1.html). Source code, binaries and test cases can be freely obtained from https://github.com/sbmlteam/moccasin CONTACT: : mhucka@caltech.edu SUPPLEMENTARY INFORMATION: More information is available at https://github.com/sbmlteam/moccasin.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Software , Biologia de Sistemas , Modelos Biológicos , Linguagens de Programação
20.
J Integr Bioinform ; 13(3): 290, 2016 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-28187406

RESUMO

Biological models often contain components that have relationships with each other, or that modelers want to treat as belonging to groups with common characteristics or shared metadata. The SBML Level 3 Version 1 Core specification does not provide an explicit mechanism for expressing such relationships, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Groups package for SBML Level 3 adds the necessary features to SBML to allow grouping of model components to be expressed. Such groups do not affect the mathematical interpretation of a model, but they do provide a way to add information that can be useful for modelers and software tools. The SBML Groups package enables a modeler to include definitions of groups and nested groups, each of which may be annotated to convey why that group was created, and what it represents.


Assuntos
Modelos Biológicos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA